Whats new

From SUMOwiki
Jump to navigationJump to search

This page gives a high level overview of the major changes in each toolbox version. For the detailed list of changes please refer to the changelog.

5.0 - Released end of January 2008

Rebranding to SUMO Toolbox

From now on the M3-Toolbox will be known as the SUrrogate MOdeling (SUMO) Toolbox.

Part of the reason for this rebranding is that the governing institution has changed. All research and development related to the SUMO toolbox is now conducted at Ghent University (UGent) (instead of Antwerp University (UA)).

Sampling related changes

The sample selection and evaluation backends have seen some major improvements. The number of samples selected each iteration need no longer be chosen a priori but is determined on the fly based on the time needed for modeling, the average length of the past 'n' simulations and the number of compute nodes (or CPU cores) available. A user specified upper bound can till be specified of course. It is now also possible to evaluate data points in batches instead of always one-by-one. This is useful if, for example, there is a considerable overhead for submitting one point.

In addition data points can be assigned priorities by the sample selection algorithm. These priorities are then reflected in the scheduling decisions made by the sample evaluator. It now also becomes possible to add different priority management policies. For example, one could require that interest in sample points be renewed, else their priorities will degrade with time.

A new sample selection algorithm as been added in this version....TODO Ivo

Finally the handling of failed or 'lost' data points has become much more robust. Pending points are automatically removed if their evaluation time exceeds a multiple of the average evaluation time. Failed points can also be re-submitted a number of times before being regarded as permanently failed.

Modeling related changes

The modeling code has seen some much needed cleanups. Adding new model types and improving the existing ones is now much more straightforward.

Since the default neural network model implementation is quite slow, two additional implementations were added based on FANN and NNSYSID which are much faster. In addition the NNSYSID implementation also supports pruning. However, though these two implementations are faster, the Matlab implementation still outperforms them accuracy wise.

An intelligent seeding strategy has been enabled. The starting point/population of each new model parameter optimization run is now chosen intelligently in order to achieve a more optimal search of the model parameter space. This leads to better models faster.

Optimization related changes

TODO Ivo

  • The Optimization framework was removed since...
  • Added an optimizer class hierarchy for solving subproblems transparantly

Various changes

The default error function is now the root relative square error (= a global relative error) instead of the absolute root mean square error. The memory usage has been drastically reduced when performing many runs with multiple datasets (datasets are loaded only once).

The default settings have been harmonized and much improved. For example the SVM parameter space is now searched in log10 instead of loge. The MinMax measure is now also enabled by default if you do not specify any other measure. This means that if you specify minimum and maximum bounds in the simulator xml file, models which do not respect these bounds are penalized.

Finally this release has seen countless cleanups, bugfixes and feature enhancements.