Difference between revisions of "OoDACE:ooDACE toolbox"

From SUMOwiki
Jump to navigationJump to search
Line 3: Line 3:
 
== Quick start guide ==
 
== Quick start guide ==
  
IMPORTANT: Before the toolbox can be used you have to include the toolbox in Matlab's path. You can do this manually
+
'''IMPORTANT: Before the toolbox can be used you have to include the toolbox in Matlab's path. You can do this manually by running startup or if Matlab is started in the root toolbox directory then startup will be run automatically.'''
by running <b>startup</b> or if Matlab is started in the root toolbox directory then startup will be run automatically.
 
  
 
<code><pre>startup</pre></code>
 
<code><pre>startup</pre></code>
  
The blindDACE toolbox is designed in an object oriented (OO) fashion.
+
Now the toolbox is ready to be used. The blindDACE toolbox is designed in an object oriented (OO) fashion.
 
It is strongly recommended to exploit the OO design directly, i.e., use the Kriging and Optimizer matlab classes.
 
It is strongly recommended to exploit the OO design directly, i.e., use the Kriging and Optimizer matlab classes.
However, for convenience wrapper scripts (dacefit, predictor) are provided that simulate the DACE toolbox interface.
+
However, for convenience wrapper scripts (dacefit, predictor) are provided that simulate the DACE toolbox interface (see section TODO for more information).
  
 
<code><pre>TODO</pre></code>
 
<code><pre>TODO</pre></code>

Revision as of 10:55, 9 February 2010

blindDACE: A versatile kriging Matlab Toolbox

Quick start guide

IMPORTANT: Before the toolbox can be used you have to include the toolbox in Matlab's path. You can do this manually by running startup or if Matlab is started in the root toolbox directory then startup will be run automatically.

startup

Now the toolbox is ready to be used. The blindDACE toolbox is designed in an object oriented (OO) fashion. It is strongly recommended to exploit the OO design directly, i.e., use the Kriging and Optimizer matlab classes. However, for convenience wrapper scripts (dacefit, predictor) are provided that simulate the DACE toolbox interface (see section TODO for more information).

TODO

See the included demo.m script for more example code on how to use the blindDACE toolbox.

Download

See: [[1]]

Usage

  • Create a network
ann = createFann([2 5 3 1],connectivity)
  • Train a network
ann = trainFann(ann,samples,values,[desired error],[max epochs])
  • Use a network
values = testFann(ann,samples)

Where samples are the input data points and values the output values, both in column format (1 column per dimension).

Note: do not use a connectivity different from 1 for else you will get wrong results (I hope this can be fixed with the new fann library)

Contribute

These bindings are very basic but they work for me. Please improve, extend, provide binaries, and of course contribute back.