Difference between revisions of "Config:Plan"

From SUMOwiki
Jump to navigationJump to search
Line 1: Line 1:
 +
'''Generated for SUMO toolbox version 6'''.
 +
''We are well aware that the list below is incomplete and possibly even out of date in some cases.  We try to document everything as best we can but much is limited by available time and manpower.  The most up to date documentation can always be found (if not here) in the default.xml configuration file and, of course, in the source files.''
 
== Plan ==
 
== Plan ==
 
=== LevelPlot ===
 
=== LevelPlot ===
Only change if you are using levelplots
+
Only change if you need to generate level plots
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
  
<!--Only change if you are using levelplots-->
+
<!--Only change if you need to generate level plots-->
 
<[[Config:LevelPlot|LevelPlot]]>default</[[Config:LevelPlot|LevelPlot]]></source>
 
<[[Config:LevelPlot|LevelPlot]]>default</[[Config:LevelPlot|LevelPlot]]></source>
 
=== ContextConfig ===
 
=== ContextConfig ===
Line 19: Line 21:
 
<[[Config:SUMO|SUMO]]>default</[[Config:SUMO|SUMO]]></source>
 
<[[Config:SUMO|SUMO]]>default</[[Config:SUMO|SUMO]]></source>
 
=== AdaptiveModelBuilder ===
 
=== AdaptiveModelBuilder ===
The AdaptiveModelBuilder specifies the model type and the modeling algorithm to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below
+
The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
  
<!--The AdaptiveModelBuilder specifies the model type and the modeling algorithm to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below-->
+
<!--The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.-->
 
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]></source>
 
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]></source>
 +
=== InitialDesign ===
 +
The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.
 +
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
 +
 +
<!--The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.-->
 +
<[[Config:InitialDesign|InitialDesign]]>lhdWithCornerPoints</[[Config:InitialDesign|InitialDesign]]></source>
 
=== SampleSelector ===
 
=== SampleSelector ===
 
The method to use for selecting new samples. Again 'gradient' is an id that refers to a SampleSelector tag defined below
 
The method to use for selecting new samples. Again 'gradient' is an id that refers to a SampleSelector tag defined below
Line 31: Line 39:
 
<[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]></source>
 
<[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]></source>
 
=== Run ===
 
=== Run ===
Runs can given a custom name by adding a name="the_name" attribute, a repeat attribute is also possible to repeat a run multiple times
+
Runs can given a custom name by using the name attribute, a repeat attribute is also possible to repeat a run multiple times
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
 
<source xmlns:saxon="http://icl.com/saxon" lang="xml">
  
<!--Runs can given a custom name by adding a name="the_name" attribute, a repeat attribute is also possible to repeat a run multiple times-->
+
<!--Runs can given a custom name by using the name attribute, a repeat attribute is also possible to repeat a run multiple times-->
 
<[[Config:Run|Run]] name="" repeat="1">
 
<[[Config:Run|Run]] name="" repeat="1">
   <!-- Configuration components, refer to those defined below  
+
   <!-- Configuration components, refer to id's defined below
 +
        (with the exception of the Simulator tag)
 
         Enties listed here override those defined on plan level -->
 
         Enties listed here override those defined on plan level -->
 
    
 
    
   <!-- This is the problem we are going to model, refers to an xml file in the examples/ directory -->
+
   <!-- This is the problem we are going to model, it refers to the name of a project
   <[[Config:Simulator|Simulator]]>Academic2DTwice.xml</[[Config:Simulator|Simulator]]>
+
        directory in the examples/ folder.  It is also possible to specify an absolute
 +
        path or to specify a particular xml file within a project directory -->
 +
   <[[Config:Simulator|Simulator]]>Academic2DTwice</[[Config:Simulator|Simulator]]>
 
    
 
    
 
   <!--
 
   <!--
   How is the simulator implemented:  
+
   How is the simulator implemented (ie, where your data comes from):  
 
     - Matlab script (matlab)
 
     - Matlab script (matlab)
     - scattered dataset (scattered),  
+
     - scattered dataset (scatteredDataset),  
 
     - local executable (local)
 
     - local executable (local)
 
     - etc
 
     - etc
 +
   
 +
    Make sure this entry matches what is declared in the simulator xml file
 +
    in the project directory.  It makes no sense to put matlab here if you only
 +
    have a scattered dataset to work with.
 
   -->
 
   -->
 
   <[[Config:SampleEvaluator|SampleEvaluator]]>matlab</[[Config:SampleEvaluator|SampleEvaluator]]>
 
   <[[Config:SampleEvaluator|SampleEvaluator]]>matlab</[[Config:SampleEvaluator|SampleEvaluator]]>
 
    
 
    
 
   <!--
 
   <!--
   The default behavior is to model all outputs and score models using  
+
   The default behavior is to model all outputs with separate models and score models using  
   crossvalidation.  See below how to override this. Note that  
+
   crossvalidation.  See below how to override this. Note that crossvalidation is a very
  crossvalidation is very a expensive measure and can significantly
+
  expensive measure and can significantly   slow things down when using computationally
  slow things down when using computationally expensive model types
+
  expensive model types (e.g., neural networks)
  (eg. neural networks)
 
 
   -->
 
   -->
 +
 +
  <!-- Model selection measure to use for this run (how models are scored)
 +
        If you put a measure to off its value is printed but not used for modeling.
 +
        If multiple measures are on, the weighted average value is optimized
 +
        (unless a pareto enabled modelbuilder is used (available from 6.1) -->
 +
  <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".01" use="on">
 +
      <Option key="folds" value="5"/>
 +
  </[[Config:Measure|Measure]]> 
 
    
 
    
   <!-- Define inputs that are to be modeled this run. This optional setting  
+
   <!-- Define inputs that are to be modelled this run (optional). This setting  
 
         reduces the dimension of the problem by keeping inputs that were not
 
         reduces the dimension of the problem by keeping inputs that were not
         selected at 0. When this section is not specified, all inputs are used.
+
         selected at 0. If an <[[Config:Inputs|Inputs]]> tag is not specified, the default behavior is to
         In this example, input x is filtered out (not mentioned) and input z is set to a constant and will have
+
        model all inputs.
      no role in the modeling process. -->
+
         In this example, both inputs x and y are selected
  <!--
+
  -->
 
   <[[Config:Inputs|Inputs]]>
 
   <[[Config:Inputs|Inputs]]>
       <[[Config:Input|Input]] name="y" />
+
      <[[Config:Input|Input]] name="x"/>
       <[[Config:Input|Input]] name="z" value="1.5" />
+
       <[[Config:Input|Input]] name="y"/>
 +
       <!-- Setting a simulator input to a constant -->
 +
      <!-- <[[Config:Input|Input]] name="value="14.6"/> -->
 
   </[[Config:Inputs|Inputs]]>
 
   </[[Config:Inputs|Inputs]]>
  -->
 
 
    
 
    
 +
  <!--         
 +
  An example configuration for the Academic2DTwice example used here.
 +
  Each output can be configured to use separate Modelbuilders, measures and sample selectors
 
    
 
    
    
+
   Again it is not necessary to specify an Outputs tag.  If you dont, all outputs are modeled
   <!--  Complex example of a modeling run of the InductivePosts example with many different
+
  in parallel.
 +
  -->
 +
  <[[Config:Outputs|Outputs]]>
 +
      <[[Config:Output|Output]] name="out">
 +
        <!--
 +
            You can specify output specific configuration here
 +
           
 +
        <[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]>
 +
        <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
 +
        <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".0001" use="on" />
 +
        -->
 +
      </[[Config:Output|Output]]>
 +
     
 +
      <[[Config:Output|Output]] name="outinverse">
 +
        <!--
 +
        <[[Config:SampleSelector|SampleSelector]]>grid</[[Config:SampleSelector|SampleSelector]]>
 +
        <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>krigingps</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
 +
        <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".05" use="on" />
 +
        -->
 +
      </[[Config:Output|Output]]>
 +
  </[[Config:Outputs|Outputs]]>
 +
 
 +
   <!--   
 +
      Complex example of a modeling run of the InductivePosts example with many different
 
       output configurations.
 
       output configurations.
    
+
   -->
 +
  <!--
 
   <[[Config:Outputs|Outputs]]>
 
   <[[Config:Outputs|Outputs]]>
     
+
 
       Model the modulus of complex output S22 using cross-validation and the default model builder
+
       Model the modulus of complex output S22 using cross-validation and the default model
       and sample selector.
+
       builder  and sample selector.
 
        
 
        
 
       <[[Config:Output|Output]] name="S22" complexHandling="modulus">
 
       <[[Config:Output|Output]] name="S22" complexHandling="modulus">
Line 86: Line 136:
 
        
 
        
 
        
 
        
       Model the modulus of complex output S22, but introduce some normally-distributed noise
+
       Model the real part of complex output S22, but introduce some normally-distributed noise
 
       (variance .01 by default).
 
       (variance .01 by default).
 
        
 
        
       <[[Config:Output|Output]] name="S22" complexHandling="modulus">
+
       <[[Config:Output|Output]] name="S22" complexHandling="real">
 
         <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".05" />
 
         <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".05" />
 
         <[[Config:Modifier|Modifier]] type="[[Modifier#Noise|Noise]]" />
 
         <[[Config:Modifier|Modifier]] type="[[Modifier#Noise|Noise]]" />
 
       </[[Config:Output|Output]]>
 
       </[[Config:Output|Output]]>
     
 
     
 
      Model the modulus of complex output S22, but introduce normally-distributed noise
 
      with variance .1. However, when Nan or Inf values are returned from the simulator,
 
      we ignore these errors and let the toolbox process them normally. By default,
 
      samples with NaN or Inf values are ignored.
 
     
 
      <[[Config:Output|Output]] name="S22" ignoreNaN="no" ignoreInf="no">
 
        <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".05" />
 
        <[[Config:Modifier|Modifier]] type="[[Modifier#Noise|Noise]]" distribution="normal" variance=".1" />
 
      </[[Config:Output|Output]]>
 
  </[[Config:Outputs|Outputs]]>
 
  -->
 
 
 
 
 
  <!--
 
 
 
  An example configuration for the Academic2DTwice example used here.
 
     
 
  <[[Config:Outputs|Outputs]]>
 
      <[[Config:Output|Output]] name="out">
 
        <[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]>
 
        <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
 
        <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".0001" use="on" />
 
      </[[Config:Output|Output]]>
 
     
 
      <[[Config:Output|Output]] name="outinverse">
 
        <[[Config:SampleSelector|SampleSelector]]>grid</[[Config:SampleSelector|SampleSelector]]>
 
        <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>kriging</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
 
        <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".05" use="on" />
 
      </[[Config:Output|Output]]>
 
  </[[Config:Outputs|Outputs]]>
 
 
   -->
 
   -->
  
Line 130: Line 148:
 
   Measure examples:
 
   Measure examples:
  
   * 5-fold crossvalidation (warning expensive on some model types (eg: takes a long time on neural networks))
+
   * 5-fold crossvalidation (warning expensive on some model types!)
 
   <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".001" use="on">
 
   <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".001" use="on">
                                <Option key="folds" value="5"/>
+
      <Option key="folds" value="5"/>
                        </[[Config:Measure|Measure]]>   
+
  </[[Config:Measure|Measure]]>   
  
 
   * Using a validation set, the size taken as 20% of the available samples
 
   * Using a validation set, the size taken as 20% of the available samples
    <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
+
  <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
                                <Option key="percentUsed" value="20"/>
+
      <Option key="percentUsed" value="20"/>
                        </[[Config:Measure|Measure]]>
+
  </[[Config:Measure|Measure]]>
 
 
  
 
   * Using a validation set defined in an external file (scattered data)
 
   * Using a validation set defined in an external file (scattered data)
      <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
+
          <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
      * the validation set come from a file
+
        * the validation set come from a file
      <Option key="type" value="file"/>
+
        <Option key="type" value="file"/>
      * the test data is scattered data so we need a scattered sample evaluator to load the data
+
        * the test data is scattered data so we need a scattered sample evaluator
      and evaluate the points. The filename is taken from the <[[Config:ScatteredDataFile|ScatteredDataFile]]> tag in the simulator
+
        to load the data and evaluate the points. The filename is taken from the
      xml file. Optionally you can specify an option with key "id" to specify a specifc dataset if there
+
        <[[Config:ScatteredDataFile|ScatteredDataFile]]> tag in the simulator xml file.
      is more than one choice.
+
        Optionally you can specify an option with key "id" to specify a specifc
      <[[Config:SampleEvaluator|SampleEvaluator]] type="ibbt.sumo.SampleEvaluators.datasets.ScatteredDatasetSampleEvaluator"/>
+
        dataset if there is more than one choice.
                        </[[Config:Measure|Measure]]>
+
        <[[Config:SampleEvaluator|SampleEvaluator]]
 +
        type="ibbt.sumo.SampleEvaluators.datasets.ScatteredDatasetSampleEvaluator"/>
 +
                    </[[Config:Measure|Measure]]>
  
 
   * Used for testing optimization problems
 
   * Used for testing optimization problems
Line 156: Line 175:
 
         Often one uses this just as a stopping criterion for benchmarking problems.
 
         Often one uses this just as a stopping criterion for benchmarking problems.
 
       * trueValue: a known global minimum
 
       * trueValue: a known global minimum
   <[[Config:Measure|Measure]] type="[[Measure#TestMinimum|TestMinimum]]" errorFcn="relativeError" trueValue="-5.0" target="0.1" use="on" />
+
   <[[Config:Measure|Measure]] type="[[Measure#TestMinimum|TestMinimum]]" errorFcn="relativeError" trueValue="-5.0" target="0.1" use="on" />  
 
 
 
 
 
 
  * Examples of combined measures:
 
  Measure the model based on a set of test samples, taken as a subset from the list of evaluated samples.
 
  This subset is selected to cover the design space as good as possible.
 
  <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
 
     
 
      <Option key="percentUsed" value="20"/>
 
      <Option key="type" value="gridded"/>
 
      <Option key="randomThreshold" value="1000"/>
 
     
 
      Submeasures can be defined to work on the model produced by the supermeasure.
 
      In this case, the ValidationSet measure will generate a new model using a subset
 
      of the entire list of evaluated samples, and will then do an additional
 
      cross-validation check on this new model.
 
      <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".001" use="on">
 
        <Option key="folds" value="5"/>
 
      </[[Config:Measure|Measure]]>
 
     
 
  </[[Config:Measure|Measure]]>
 
 
 
  <[[Config:Measure|Measure]] type="[[Measure#ModelDifference|ModelDifference]]" target=".001" use="off">
 
      <Option key="LHS" value="1000"/>
 
 
 
      <[[Config:Measure|Measure]] type="[[Measure#SampleError|SampleError]]" target=".001" use="off">
 
       
 
        <[[Config:Measure|Measure]] type="[[Measure#LeaveNOut|LeaveNOut]]" target=".001" use="off">
 
            <Option key="count" value="5"/>
 
        </[[Config:Measure|Measure]]>
 
       
 
      </[[Config:Measure|Measure]]>
 
     
 
  </[[Config:Measure|Measure]]>
 
 
   -->
 
   -->
 
</[[Config:Run|Run]]></source>
 
</[[Config:Run|Run]]></source>

Revision as of 14:22, 17 July 2008

Generated for SUMO toolbox version 6. We are well aware that the list below is incomplete and possibly even out of date in some cases. We try to document everything as best we can but much is limited by available time and manpower. The most up to date documentation can always be found (if not here) in the default.xml configuration file and, of course, in the source files.

Plan

LevelPlot

Only change if you need to generate level plots

<!--Only change if you need to generate level plots-->
<[[Config:LevelPlot|LevelPlot]]>default</[[Config:LevelPlot|LevelPlot]]>

ContextConfig

ContextConfig should (normally) always be set to 'default'

<!--ContextConfig should (normally) always be set to 'default'-->
<[[Config:ContextConfig|ContextConfig]]>default</[[Config:ContextConfig|ContextConfig]]>

SUMO

SUMO should (normally) always be set to 'default'

<!--SUMO should (normally) always be set to 'default'-->
<[[Config:SUMO|SUMO]]>default</[[Config:SUMO|SUMO]]>

AdaptiveModelBuilder

The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.

<!--The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.-->
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>

InitialDesign

The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.

<!--The AdaptiveModelBuilder specifies the model type and the hyperparameter optimization algorithm (= the algorithm to choose the model parameters, also referred to as the modeling algorithm) to use The default value 'rational' refers to rational functions. 'rational' is an id that refers to an AdaptiveModelBuilder tag that is defined below.-->
<[[Config:InitialDesign|InitialDesign]]>lhdWithCornerPoints</[[Config:InitialDesign|InitialDesign]]>

SampleSelector

The method to use for selecting new samples. Again 'gradient' is an id that refers to a SampleSelector tag defined below

<!--The method to use for selecting new samples. Again 'gradient' is an id that refers to a SampleSelector tag defined below-->
<[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]>

Run

Runs can given a custom name by using the name attribute, a repeat attribute is also possible to repeat a run multiple times

<!--Runs can given a custom name by using the name attribute, a repeat attribute is also possible to repeat a run multiple times-->
<[[Config:Run|Run]] name="" repeat="1">
   <!-- Configuration components, refer to id's defined below
        (with the exception of the Simulator tag)
        Enties listed here override those defined on plan level -->
   
   <!-- This is the problem we are going to model, it refers to the name of a project
        directory in the examples/ folder.  It is also possible to specify an absolute
        path or to specify a particular xml file within a project directory -->
   <[[Config:Simulator|Simulator]]>Academic2DTwice</[[Config:Simulator|Simulator]]>
   
   <!--
   How is the simulator implemented (ie, where your data comes from): 
     - Matlab script (matlab)
     - scattered dataset (scatteredDataset), 
     - local executable (local)
     - etc
     
     Make sure this entry matches what is declared in the simulator xml file
     in the project directory.  It makes no sense to put matlab here if you only
     have a scattered dataset to work with.
   -->
   <[[Config:SampleEvaluator|SampleEvaluator]]>matlab</[[Config:SampleEvaluator|SampleEvaluator]]>
   
   <!--
   The default behavior is to model all outputs with separate models and score models using 
   crossvalidation.  See below how to override this. Note that crossvalidation is a very
   expensive measure and can significantly   slow things down when using computationally
   expensive model types (e.g., neural networks)
   -->

   <!-- Model selection measure to use for this run (how models are scored)
        If you put a measure to off its value is printed but not used for modeling. 
        If multiple measures are on, the weighted average value is optimized
        (unless a pareto enabled modelbuilder is used (available from 6.1) -->
   <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".01" use="on">
      <Option key="folds" value="5"/>
   </[[Config:Measure|Measure]]>   
   
   <!-- Define inputs that are to be modelled this run (optional). This setting 
        reduces the dimension of the problem by keeping inputs that were not
        selected at 0. If an <[[Config:Inputs|Inputs]]> tag is not specified, the default behavior is to
        model all inputs.
        In this example, both inputs x and y are selected
   -->
   <[[Config:Inputs|Inputs]]>
      <[[Config:Input|Input]] name="x"/>
      <[[Config:Input|Input]] name="y"/>
      <!-- Setting a simulator input to a constant -->
      <!-- <[[Config:Input|Input]] name="y  value="14.6"/> -->
   </[[Config:Inputs|Inputs]]>
   
   <!--          
   An example configuration for the Academic2DTwice example used here.
   Each output can be configured to use separate Modelbuilders, measures and sample selectors
   
   Again it is not necessary to specify an Outputs tag.  If you dont, all outputs are modeled
   in parallel.
   -->
   <[[Config:Outputs|Outputs]]>
      <[[Config:Output|Output]] name="out">
         <!--
             You can specify output specific configuration here
             
         <[[Config:SampleSelector|SampleSelector]]>gradient</[[Config:SampleSelector|SampleSelector]]>
         <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>rational</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
         <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".0001" use="on" />
         -->
      </[[Config:Output|Output]]>
      
      <[[Config:Output|Output]] name="outinverse">
         <!--
         <[[Config:SampleSelector|SampleSelector]]>grid</[[Config:SampleSelector|SampleSelector]]>
         <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>krigingps</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
         <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".05" use="on" />
         -->
      </[[Config:Output|Output]]>
   </[[Config:Outputs|Outputs]]>

   <!--   
      Complex example of a modeling run of the InductivePosts example with many different
      output configurations.
   -->
   <!--
   <[[Config:Outputs|Outputs]]>

      Model the modulus of complex output S22 using cross-validation and the default model
      builder   and sample selector.
      
      <[[Config:Output|Output]] name="S22" complexHandling="modulus">
         <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".05" />
      </[[Config:Output|Output]]>
      
      
      Model the real part of complex output S22, but introduce some normally-distributed noise
      (variance .01 by default).
      
      <[[Config:Output|Output]] name="S22" complexHandling="real">
         <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".05" />
         <[[Config:Modifier|Modifier]] type="[[Modifier#Noise|Noise]]" />
      </[[Config:Output|Output]]>
   -->

   <!--
   Measure examples:

   * 5-fold crossvalidation (warning expensive on some model types!)
   <[[Config:Measure|Measure]] type="[[Measure#CrossValidation|CrossValidation]]" target=".001" use="on">
      <Option key="folds" value="5"/>
   </[[Config:Measure|Measure]]>   

   * Using a validation set, the size taken as 20% of the available samples
   <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
      <Option key="percentUsed" value="20"/>
   </[[Config:Measure|Measure]]>

   * Using a validation set defined in an external file (scattered data)
          <[[Config:Measure|Measure]] type="[[Measure#ValidationSet|ValidationSet]]" target=".001">
         * the validation set come from a file
         <Option key="type" value="file"/>
         * the test data is scattered data so we need a scattered sample evaluator
         to load the data and evaluate the points. The filename is taken from the
         <[[Config:ScatteredDataFile|ScatteredDataFile]]> tag in the simulator xml file.
         Optionally you can specify an option with key "id" to specify a specifc
         dataset if there is more than one choice.
         <[[Config:SampleEvaluator|SampleEvaluator]]
         type="ibbt.sumo.SampleEvaluators.datasets.ScatteredDatasetSampleEvaluator"/>
                     </[[Config:Measure|Measure]]>

   * Used for testing optimization problems
      * Calculates the (relative) error between the current minimum and a known minimum.
        Often one uses this just as a stopping criterion for benchmarking problems.
      * trueValue: a known global minimum
   <[[Config:Measure|Measure]] type="[[Measure#TestMinimum|TestMinimum]]" errorFcn="relativeError" trueValue="-5.0" target="0.1" use="on" />   
   -->
</[[Config:Run|Run]]>