Difference between revisions of "Config:SequentialDesign"

From SUMOwiki
Jump to navigationJump to search
m
m
Line 4: Line 4:
 
Dont select any new samples, useful when modeling multiple outputs in paralel
 
Dont select any new samples, useful when modeling multiple outputs in paralel
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/>
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/>
 
</source>
 
</source>
 
=== random ===
 
=== random ===
 
Each sampling iterations new samples are selected randomly
 
Each sampling iterations new samples are selected randomly
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/>
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/>
 
</source>
 
</source>
 
=== combo ===
 
=== combo ===
 
Allows you combine multiple sample selector algorithms
 
Allows you combine multiple sample selector algorithms
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false">
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false">
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:RationalPoleSuppressionSampleSelector|RationalPoleSuppressionSampleSelector]]" combineOutputs="false"><!-- Currently no options are available, if the model is a rational model, and a
+
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RationalPoleSuppressionSampleSelector|RationalPoleSuppressionSampleSelector]]" combineOutputs="false"><!-- Currently no options are available, if the model is a rational model, and a
 
  - - pole is found (using a simple search strategy), the pole is returned --></[[Config:SampleSelector|SampleSelector]]>
 
  - - pole is found (using a simple search strategy), the pole is returned --></[[Config:SampleSelector|SampleSelector]]>
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
+
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
 
       <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
 
       <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
 
       <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
 
       <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
Line 34: Line 34:
 
An adaptive sample selection algorithm that does a trade-off between error and density
 
An adaptive sample selection algorithm that does a trade-off between error and density
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
 
   <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
 
   <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
 
   <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
 
   <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
Line 49: Line 49:
 
A simple density based sample selection algorithm
 
A simple density based sample selection algorithm
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/>
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/>
 
</source>
 
</source>
 
=== error ===
 
=== error ===
 
An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid
 
An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
 
   <Option key="nLastModels" value="4"/><!-- One of none, max, cap, capmax -->
 
   <Option key="nLastModels" value="4"/><!-- One of none, max, cap, capmax -->
 
   <Option key="differenceScaling" value="none"/><!-- Gridsize to evaluate on, one of int or array of dimension length -->
 
   <Option key="differenceScaling" value="none"/><!-- Gridsize to evaluate on, one of int or array of dimension length -->
Line 66: Line 66:
 
A highly adaptive sampling algorithm, error and density based
 
A highly adaptive sampling algorithm, error and density based
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
 
   <Option key="neighbourhoodSize" value="2"/>
 
   <Option key="neighbourhoodSize" value="2"/>
 
</[[Config:SampleSelector|SampleSelector]]>
 
</[[Config:SampleSelector|SampleSelector]]>
Line 73: Line 73:
 
A sampling algorithm aimed at optimization problems
 
A sampling algorithm aimed at optimization problems
 
<source lang="xml">
 
<source lang="xml">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector:InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false"><!-- A criterion determines the interesting regions to sample --><!-- Choose 1 from the following: -->
+
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false"><!-- A criterion determines the interesting regions to sample --><!-- Choose 1 from the following: -->
 
   <Option key="criterion" value="gei"/><!-- generalized expected improvement -->
 
   <Option key="criterion" value="gei"/><!-- generalized expected improvement -->
 
   <Option key="g" value="1"/><!-- balanced local-global search --><!--<Option key="criterion" value="wei" />--><!-- weighted expected improvement --><!--<Option key="w" value="0.5" />--><!-- weight, 0 is global search, 1 is local search --><!--<Option key="criterion" value="ei" />--><!-- expected improvement --><!--<Option key="criterion" value="kushner" />--><!-- kushner --><!--<Option key="eps" value="0.001" />--><!--<Option key="criterion" value="lcb" />--><!-- lower confidence bound function --><!--<Option key="lcb" value="2.0" />--><!--<Option key="criterion" value="maxvar" />--><!-- maximizes variation --><!-- Watson and Barnes criterions --><!--<Option key="criterion" value="wb1" />--><!-- threshold-bounded extreme --><!--<Option key="criterion" value="wb2" />--><!-- regional extreme --><!--<Option key="criterion" value="crowdedness" />--><!-- crowdedness function --><!-- This criterion has to be solved to choose new samples, one can choose the optimizer used here -->
 
   <Option key="g" value="1"/><!-- balanced local-global search --><!--<Option key="criterion" value="wei" />--><!-- weighted expected improvement --><!--<Option key="w" value="0.5" />--><!-- weight, 0 is global search, 1 is local search --><!--<Option key="criterion" value="ei" />--><!-- expected improvement --><!--<Option key="criterion" value="kushner" />--><!-- kushner --><!--<Option key="eps" value="0.001" />--><!--<Option key="criterion" value="lcb" />--><!-- lower confidence bound function --><!--<Option key="lcb" value="2.0" />--><!--<Option key="criterion" value="maxvar" />--><!-- maximizes variation --><!-- Watson and Barnes criterions --><!--<Option key="criterion" value="wb1" />--><!-- threshold-bounded extreme --><!--<Option key="criterion" value="wb2" />--><!-- regional extreme --><!--<Option key="criterion" value="crowdedness" />--><!-- crowdedness function --><!-- This criterion has to be solved to choose new samples, one can choose the optimizer used here -->
   <[[Config:Optimizer|Optimizer]] type="[[Optimizer:DirectOptimizer|DirectOptimizer]]">
+
   <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
 
       <Option key="maxevals" value="1000"/>
 
       <Option key="maxevals" value="1000"/>
 
       <Option key="maxits" value="300"/>
 
       <Option key="maxits" value="300"/>
 
   </[[Config:Optimizer|Optimizer]]><!--
 
   </[[Config:Optimizer|Optimizer]]><!--
<[[Config:Optimizer|Optimizer]] type="[[Optimizer:MatlabGA|MatlabGA]]">
+
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabGA|MatlabGA]]">
 
     </[[Config:Optimizer|Optimizer]]>
 
     </[[Config:Optimizer|Optimizer]]>
 
--><!-- when debug is 'on' a contour plot of the ISC function is drawn every iteration. --><!-- Together with the current samples and the chosen samples -->
 
--><!-- when debug is 'on' a contour plot of the ISC function is drawn every iteration. --><!-- Together with the current samples and the chosen samples -->

Revision as of 10:23, 8 February 2008

SampleSelector

empty

Dont select any new samples, useful when modeling multiple outputs in paralel

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/>

random

Each sampling iterations new samples are selected randomly

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/>

combo

Allows you combine multiple sample selector algorithms

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false">
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RationalPoleSuppressionSampleSelector|RationalPoleSuppressionSampleSelector]]" combineOutputs="false"><!-- Currently no options are available, if the model is a rational model, and a
 - - pole is found (using a simple search strategy), the pole is returned --></[[Config:SampleSelector|SampleSelector]]>
   <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
      <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
      <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
      <Option key="scoreFunction" value="weightedLinear"/><!-- Weighting for weightedLinear -->
      <Option key="lambda" value="0.5"/><!-- Weighting for weightedGeometric -->
      <Option key="mu" value="0.5"/><!-- One of none, max, cap, capmax -->
      <Option key="volumeScaling" value="max"/>
      <Option key="differenceScaling" value="capmax"/><!-- Boolean flag, if set all points closer than snapThreshold to the boundary of 
 - - the domain are clipped to the boundary -->
      <Option key="snapToEdge" value="enable"/>
      <Option key="snapThreshold" value=".05"/>
   </[[Config:SampleSelector|SampleSelector]]>
</[[Config:SampleSelector|SampleSelector]]>

delaunay

An adaptive sample selection algorithm that does a trade-off between error and density

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"><!-- One of all, data -->
   <Option key="sampleSelect" value="all"/><!-- Integer between 2 and 20 -->
   <Option key="nLastModels" value="2"/><!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
   <Option key="scoreFunction" value="weightedLinear"/>
   <Option key="lambda" value="0.5"/>
   <Option key="mu" value="0.5"/><!-- One of none, max, cap, capmax -->
   <Option key="volumeScaling" value="max"/>
   <Option key="differenceScaling" value="capmax"/><!-- Boolean flag -->
   <Option key="snapToEdge" value="enable"/>
   <Option key="snapThreshold" value=".2"/>
</[[Config:SampleSelector|SampleSelector]]>

density

A simple density based sample selection algorithm

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/>

error

An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
   <Option key="nLastModels" value="4"/><!-- One of none, max, cap, capmax -->
   <Option key="differenceScaling" value="none"/><!-- Gridsize to evaluate on, one of int or array of dimension length -->
   <Option key="gridSize" value="50"/><!-- Maximum total points to evaluate, distributed over dimensions -->
   <Option key="maxGridSize" value="100000"/><!-- Closeness threshold, Double -->
   <Option key="closenessThreshold" value="0.2"/><!-- Set a % of the maximumSamples to randomly chosen -->
   <Option key="randomPercentage" value="20"/>
</[[Config:SampleSelector|SampleSelector]]>

gradient

A highly adaptive sampling algorithm, error and density based

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false"><!-- Integer between 2 and 20 -->
   <Option key="neighbourhoodSize" value="2"/>
</[[Config:SampleSelector|SampleSelector]]>

isc

A sampling algorithm aimed at optimization problems

<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false"><!-- A criterion determines the interesting regions to sample --><!-- Choose 1 from the following: -->
   <Option key="criterion" value="gei"/><!-- generalized expected improvement -->
   <Option key="g" value="1"/><!-- balanced local-global search --><!--<Option key="criterion" value="wei" />--><!-- weighted expected improvement --><!--<Option key="w" value="0.5" />--><!-- weight, 0 is global search, 1 is local search --><!--<Option key="criterion" value="ei" />--><!-- expected improvement --><!--<Option key="criterion" value="kushner" />--><!-- kushner --><!--<Option key="eps" value="0.001" />--><!--<Option key="criterion" value="lcb" />--><!-- lower confidence bound function --><!--<Option key="lcb" value="2.0" />--><!--<Option key="criterion" value="maxvar" />--><!-- maximizes variation --><!-- Watson and Barnes criterions --><!--<Option key="criterion" value="wb1" />--><!-- threshold-bounded extreme --><!--<Option key="criterion" value="wb2" />--><!-- regional extreme --><!--<Option key="criterion" value="crowdedness" />--><!-- crowdedness function --><!-- This criterion has to be solved to choose new samples, one can choose the optimizer used here -->
   <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
      <Option key="maxevals" value="1000"/>
      <Option key="maxits" value="300"/>
   </[[Config:Optimizer|Optimizer]]><!--
		<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabGA|MatlabGA]]">
     </[[Config:Optimizer|Optimizer]]>
		--><!-- when debug is 'on' a contour plot of the ISC function is drawn every iteration. --><!-- Together with the current samples and the chosen samples -->
   <Option key="debug" value="off"/>
</[[Config:SampleSelector|SampleSelector]]>