Difference between revisions of "Config:ModelBuilder"
Line 1: | Line 1: | ||
− | '''Generated for SUMO toolbox version 6'''. | + | '''Generated for SUMO toolbox version 6.1'''. |
− | ''We are well aware that | + | ''We are well aware that documentation is not always complete and possibly even out of date in some cases. We try to document everything as best we can but much is limited by available time and manpower. We are are a university research group after all. The most up to date documentation can always be found (if not here) in the default.xml configuration file and, of course, in the source files. If something is unclear please dont hesitate to [[Reporting problems|ask]].'' |
== AdaptiveModelBuilder == | == AdaptiveModelBuilder == | ||
=== rational === | === rational === | ||
− | Build rational models | + | Build rational models using a custom stochastic hillclimber to select the model parameters |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="true"> | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="true"> | ||
Line 16: | Line 16: | ||
- - when set to last, the last `historySize' models are kept --> | - - when set to last, the last `historySize' models are kept --> | ||
<Option key="strategy" value="best"/> | <Option key="strategy" value="best"/> | ||
− | |||
<!-- <Option key="strategy" value="window"/> --> | <!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]"> |
<!-- Bounds for the weights of the rational modeller --> | <!-- Bounds for the weights of the rational modeller --> | ||
<Option key="weightBounds" value="1,40"/> | <Option key="weightBounds" value="1,40"/> | ||
Line 25: | Line 24: | ||
<Option key="percentBounds" value="1,100"/> | <Option key="percentBounds" value="1,100"/> | ||
<!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | <!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | ||
− | <Option key="maxDegrees" value=" | + | <Option key="maxDegrees" value="80"/> |
<!-- When randomizing rational flags, what percentage should be set --> | <!-- When randomizing rational flags, what percentage should be set --> | ||
<Option key="percentRational" value="70"/> | <Option key="percentRational" value="70"/> | ||
Line 32: | Line 31: | ||
<Option key="frequencyVariable" value="auto"/> | <Option key="frequencyVariable" value="auto"/> | ||
<!-- Base function for interpolation, one of chebyshev, power, legendre --> | <!-- Base function for interpolation, one of chebyshev, power, legendre --> | ||
− | <Option key="basis" value=" | + | <Option key="basis" value="power"/> |
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 43: | Line 42: | ||
<Option key="restartStrategy" value="continue"/> | <Option key="restartStrategy" value="continue"/> | ||
<Option key="populationType" value="custom"/> | <Option key="populationType" value="custom"/> | ||
− | <Option key="populationSize" value=" | + | <Option key="populationSize" value="30"/> |
<Option key="crossoverFraction" value="0.7"/> | <Option key="crossoverFraction" value="0.7"/> | ||
− | <Option key="maxGenerations" value=" | + | <Option key="maxGenerations" value="20"/> |
<Option key="eliteCount" value="1"/> | <Option key="eliteCount" value="1"/> | ||
− | <Option key="stallGenLimit" value=" | + | <Option key="stallGenLimit" value="5"/> |
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | + | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]"> |
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
− | <Option key=" | + | <Option key="creationFcn" value="createInitialPopulation"/> |
− | <Option key="creationFcn" value=" | + | <!-- Use the next three functions instead of the previous three if you set the |
+ | population type to doubleVector --> | ||
+ | <!--<Option key="creationFcn" value="@gacreationuniform"/> | ||
+ | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
+ | <Option key="mutationFcn" value="@mutationadaptfeasible"/>--> | ||
+ | |||
<!-- Bounds for the weights of the rational modeller --> | <!-- Bounds for the weights of the rational modeller --> | ||
<Option key="weightBounds" value="1,40"/> | <Option key="weightBounds" value="1,40"/> | ||
Line 60: | Line 64: | ||
<Option key="percentBounds" value="1,100"/> | <Option key="percentBounds" value="1,100"/> | ||
<!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | <!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | ||
− | <Option key="maxDegrees" value="40"/> | + | <Option key="maxDegrees" value="80"/> |
+ | <!-- When randomizing rational flags, what percentage should be set --> | ||
+ | <Option key="percentRational" value="70"/> | ||
+ | <!-- If a variable is named "f" of "frequency" | ||
+ | it will be modelled differently, if this is set to auto --> | ||
+ | <!-- If this field is set to a variable name, that variable will be considered to be the frequency --> | ||
+ | <Option key="frequencyVariable" value="auto"/> | ||
+ | <!-- Base function for interpolation, one of chebyshev, power, legendre --> | ||
+ | <Option key="basis" value="power"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === rationalpso === | ||
+ | Generate Rational models using PSO | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> | ||
+ | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
+ | <Option key="plotOptimSurface" value="false"/> | ||
+ | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
+ | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
+ | <Option key="restartStrategy" value="intelligent"/> | ||
+ | |||
+ | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]"> | ||
+ | <Option key="typePSO" value="0"/> | ||
+ | <Option key="seedPSO" value="1"/> | ||
+ | <Option key="popSize" value="10"/> | ||
+ | <Option key="maxiters" value="10"/> | ||
+ | <Option key="epochInertia" value="8"/> | ||
+ | <Option key="gradientTermination" value="8"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]"> | ||
+ | <!-- Bounds for the weights of the rational modeller --> | ||
+ | <Option key="weightBounds" value="1,40"/> | ||
+ | <!-- Bounds for the percentage of degrees of freedom wrt number of samples --> | ||
+ | <Option key="percentBounds" value="1,100"/> | ||
+ | <!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | ||
+ | <Option key="maxDegrees" value="80"/> | ||
<!-- When randomizing rational flags, what percentage should be set --> | <!-- When randomizing rational flags, what percentage should be set --> | ||
<Option key="percentRational" value="70"/> | <Option key="percentRational" value="70"/> | ||
Line 68: | Line 109: | ||
<Option key="frequencyVariable" value="auto"/> | <Option key="frequencyVariable" value="auto"/> | ||
<!-- Base function for interpolation, one of chebyshev, power, legendre --> | <!-- Base function for interpolation, one of chebyshev, power, legendre --> | ||
− | <Option key="basis" value=" | + | <Option key="basis" value="power"/> |
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
=== polynomialfixed === | === polynomialfixed === | ||
− | Build polynomial models | + | Build polynomial models with a fixed order |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false"> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#PolynomialFactory|PolynomialFactory]]"> |
<!-- Specifies the structure of the polynomial --> | <!-- Specifies the structure of the polynomial --> | ||
<!-- Expects matlab matrix: Element (i,j) is the exponent of variable i for term j. --> | <!-- Expects matlab matrix: Element (i,j) is the exponent of variable i for term j. --> | ||
<Option key="degrees" value="[0 0;1 0;0 1;1 1;2 0;0 2;2 2]"/> <!-- Equals to 1+x+y+xy+xx+yy+xxyy --> | <Option key="degrees" value="[0 0;1 0;0 1;1 1;2 0;0 2;2 2]"/> <!-- Equals to 1+x+y+xy+xx+yy+xxyy --> | ||
<!-- Base function for interpolation, one of chebyshev, power, legendre --> | <!-- Base function for interpolation, one of chebyshev, power, legendre --> | ||
− | <Option key="basis" value=" | + | <Option key="basis" value="power"/> |
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === rbf === |
Build Radial Basis Function models | Build Radial Basis Function models | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
Line 102: | Line 143: | ||
<!-- <Option key="strategy" value="window"/> --> | <!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
Line 112: | Line 153: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === rbfgenetic === |
Build Radial Basis Function models using a genetic algorithm | Build Radial Basis Function models using a genetic algorithm | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
Line 129: | Line 170: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
− | + | <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="creationFcn" value=" | ||
<!-- Bounds for the shape parameter --> | <!-- Bounds for the shape parameter --> | ||
Line 163: | Line 203: | ||
--> | --> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === dace === |
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
Line 182: | Line 222: | ||
<!-- <Option key="strategy" value="window"/> --> | <!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
Line 192: | Line 232: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === dacegenetic === |
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
Line 208: | Line 248: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
− | + | <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="creationFcn" value=" | ||
<!-- Bounds for the shape parameter --> | <!-- Bounds for the shape parameter --> | ||
Line 224: | Line 263: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === daceps === |
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 236: | Line 275: | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> |
+ | <Option key="maxIterations" value="500"/> | ||
+ | <Option key="maxFunEvals" value="100"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> | ||
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
Line 250: | Line 293: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === gpps === |
+ | Build GP models | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> | ||
+ | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
+ | <Option key="plotOptimSurface" value="false"/> | ||
+ | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
+ | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
+ | <Option key="restartStrategy" value="intelligent"/> | ||
+ | |||
+ | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> | ||
+ | <Option key="maxIterations" value="500"/> | ||
+ | <Option key="maxFunEvals" value="100"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#GaussianProcessFactory|GaussianProcessFactory]]"> | ||
+ | <Option key="covFunction" value="covSEiso"/> | ||
+ | |||
+ | <Option key="lowerThetaBound" value="-5"/> | ||
+ | <Option key="upperThetaBound" value="3"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === gpgenetic === | ||
+ | Build Gaussian Process models | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"> | ||
+ | <!--See that matlab gads toolbox documentation for more information on the options--> | ||
+ | <Option key="populationType" value="doubleVector"/> | ||
+ | <Option key="populationSize" value="15"/> | ||
+ | <Option key="crossoverFraction" value="0.7"/> | ||
+ | <Option key="maxGenerations" value="10"/> | ||
+ | <Option key="eliteCount" value="1"/> | ||
+ | <Option key="stallGenLimit" value="4"/> | ||
+ | <Option key="stallTimeLimit" value="Inf"/> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#GaussianProcessFactory|GaussianProcessFactory]]"> | ||
+ | <Option key="creationFcn" value="@gacreationuniform"/> | ||
+ | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
+ | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
+ | <!-- | ||
+ | <Option key="crossoverFcn" value="crossover"/> | ||
+ | <Option key="mutationFcn" value="mutation"/> | ||
+ | <Option key="creationFcn" value="createInitialPopulation"/> | ||
+ | --> | ||
+ | |||
+ | <Option key="covFunction" value="covSEiso"/> | ||
+ | <Option key="lowerThetaBound" value="-5"/> | ||
+ | <Option key="upperThetaBound" value="3"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === dacepso === | ||
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 272: | Line 370: | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
Line 281: | Line 379: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="AP"/> | <Option key="backend" value="AP"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
=== krigingsim === | === krigingsim === | ||
− | Build kriging models using Simulated Annealing | + | Build kriging models using Simulated Annealing The kriging models are implemented using The DACE Toolbox from http://www2.imm.dtu.dk/~hbn/dace |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 293: | Line 391: | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <!-- See the DACE Toolbox documentaion for possible regression and correlation functions --> | ||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> | ||
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 307: | Line 409: | ||
Build kriging models using pattern search | Build kriging models using pattern search | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 313: | Line 415: | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> | ||
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 329: | Line 434: | ||
Build kriging models using the matlab optimization toolbox | Build kriging models using the matlab optimization toolbox | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 335: | Line 440: | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> | ||
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 356: | Line 465: | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
<!-- If you specify "custom" as the population type you will be evolving models | <!-- If you specify "custom" as the population type you will be evolving models | ||
− | and will use the genetic operators defined in the | + | and will use the genetic operators defined in the KrigingFactory class --> |
<Option key="populationType" value="doubleVector"/> | <Option key="populationType" value="doubleVector"/> | ||
<Option key="populationSize" value="10"/> | <Option key="populationSize" value="10"/> | ||
Line 365: | Line 474: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoverheuristic"/> | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
<Option key="mutationFcn" value="@mutationadaptfeasible"/> | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
− | + | <!-- <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> --> |
− | |||
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
Line 378: | Line 486: | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 384: | Line 492: | ||
Build kriging models using PSO | Build kriging models using PSO | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
Line 400: | Line 508: | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === krigingnsga === | ||
+ | Build kriging models using NSGA-II, requires a multi-output or multi-measure setup | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#ParetoModelBuilder|ParetoModelBuilder]]" combineOutputs="true"> | ||
+ | <Option key="restartStrategy" value="model"/> | ||
+ | <Option key="populationSize" value="30"/> | ||
+ | <Option key="maxGenerations" value="30"/> | ||
+ | <Option key="plotParetoFront" value="false"/> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> | ||
+ | <Option key="lowerThetaBound" value="-5"/> | ||
+ | <Option key="upperThetaBound" value="3"/> | ||
+ | <Option key="regressionFunction" value="regpoly1"/> | ||
+ | <Option key="correlationFunction" value="corrgauss"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 417: | Line 542: | ||
<Option key="runSize" value="100"/> | <Option key="runSize" value="100"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
<Option key="regressionFunction" value="regpoly1"/> | <Option key="regressionFunction" value="regpoly1"/> | ||
<Option key="correlationFunction" value="corrgauss"/> | <Option key="correlationFunction" value="corrgauss"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
− | === | + | === blindkriging === |
− | Build | + | Build blind kriging models |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false"> |
− | <Option key=" | + | |
− | <Option key=" | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> |
− | + | <Option key="lowerThetaBound" value="-5"/> | |
− | + | <Option key="upperThetaBound" value="3"/> | |
+ | <Option key="correlationFunction" value="corrgauss"/> | ||
+ | |||
+ | <Option key="backend" value="blind"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
+ | |||
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === kriging === | ||
+ | Build kriging models using the maximum likelihood to set the thetas | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false"> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]"> | ||
+ | <Option key="lowerThetaBound" value="-5"/> | ||
+ | <Option key="upperThetaBound" value="3"/> | ||
+ | <Option key="correlationFunction" value="correxp"/> | ||
+ | |||
+ | <Option key="backend" value="dace"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
− | |||
− | |||
− | |||
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 454: | Line 595: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoverheuristic"/> | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
<Option key="mutationFcn" value="@mutationadaptfeasible"/> | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
<!-- <Option key="creationFcn" value="createInitialPopulation"/> | <!-- <Option key="creationFcn" value="createInitialPopulation"/> | ||
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> --> |
− | |||
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 470: | Line 610: | ||
Build spline models using the Simulated Annealing modelbuilder | Build spline models using the Simulated Annealing modelbuilder | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]"> | ||
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 485: | Line 628: | ||
Build spline models using the Pattern Search modelbuilder | Build spline models using the Pattern Search modelbuilder | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]"> | ||
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 502: | Line 648: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | <Option key="maxIterations" value=" | + | |
− | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]"> | |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]"> |
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
+ | |||
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 530: | Line 680: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]"> |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
− | |||
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
Line 563: | Line 712: | ||
So should be a list of max 2 items --> | So should be a list of max 2 items --> | ||
<Option key="transferFunctionTemplate" value="tansig,purelin"/> | <Option key="transferFunctionTemplate" value="tansig,purelin"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === annfixed === | ||
+ | Fixed ANN model builder, allows you to choose the hidden layer structure manually Thus there is no optimization algorithm involved. | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false"> | ||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]"> | ||
+ | <Option key="allowedLearningRules" value="trainbr"/> | ||
+ | <Option key="initialSize" value="3,3"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 572: | Line 731: | ||
<!--This many iterations before allowing new samples--> | <!--This many iterations before allowing new samples--> | ||
<Option key="runSize" value="10"/> | <Option key="runSize" value="10"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]"> |
<Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/> | <Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 593: | Line 752: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#FANNFactory|FANNFactory]]"> |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
− | |||
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
Line 609: | Line 767: | ||
<!--train until the error reaches this goal--> | <!--train until the error reaches this goal--> | ||
<Option key="trainingGoal" value="0"/> | <Option key="trainingGoal" value="0"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 628: | Line 786: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#NANNFactory|NANNFactory]]"> |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
− | |||
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
Line 648: | Line 805: | ||
<!-- retrain epochs while pruning--> | <!-- retrain epochs while pruning--> | ||
<Option key="retrain" value="50"/> | <Option key="retrain" value="50"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 668: | Line 825: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoverheuristic"/> | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
<Option key="mutationFcn" value="@mutationadaptfeasible"/> | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
<!-- <Option key="creationFcn" value="createInitialPopulation"/> | <!-- <Option key="creationFcn" value="createInitialPopulation"/> | ||
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> --> |
− | |||
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
Line 681: | Line 837: | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 687: | Line 843: | ||
Use the matlab gads toolbox to select LSSVM parameters using Pattern Search | Use the matlab gads toolbox to select LSSVM parameters using Pattern Search | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 693: | Line 849: | ||
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <[[Config: | + | <!--See that matlab gads toolbox documentation for more information on the options--> |
+ | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> | ||
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> | ||
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 710: | Line 869: | ||
Use the matlab optimization toolbox to select LSSVM parameters | Use the matlab optimization toolbox to select LSSVM parameters | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 717: | Line 876: | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
<!--See the interface matlab file and the optimization toolbox documentation for more information on the options--> | <!--See the interface matlab file and the optimization toolbox documentation for more information on the options--> | ||
− | <Option key="maxIterations" value=" | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]"> |
− | + | <Option key="maxIterations" value="100"/> | |
− | + | <Option key="maxFunEvals" value="20"/> | |
− | <[[Config: | + | </[[Config:Optimizer|Optimizer]]> |
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> | ||
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 731: | Line 892: | ||
Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization | Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 747: | Line 908: | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 758: | Line 919: | ||
Use the matlab gads toolbox to select LSSVM parameters using simulated annealing | Use the matlab gads toolbox to select LSSVM parameters using simulated annealing | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 765: | Line 926: | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
<!--See the interface matlab file and the gads toolbox documentation for more information on the options--> | <!--See the interface matlab file and the gads toolbox documentation for more information on the options--> | ||
− | <Option key="maxIterations" value=" | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]"> |
− | + | <Option key="maxIterations" value="100"/> | |
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 787: | Line 950: | ||
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> | ||
− | <Option key="maxits" value=" | + | <Option key="maxits" value="100"/> |
− | <Option key="maxevals" value=" | + | <Option key="maxevals" value="20"/> |
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
+ | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
+ | </source> | ||
+ | === lssvmego === | ||
+ | Generate LS-SVM models using EGO | ||
+ | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
+ | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#EGOModelBuilder|EGOModelBuilder]]" combineOutputs="false"> | ||
+ | <Option key="numIterations" value="10"/> | ||
+ | <Option key="initPopSize" value="5"/> | ||
+ | <Option key="restartStrategy" value="continue"/> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> | ||
+ | <Option key="backend" value="lssvm"/> | ||
+ | <Option key="kernel" value="rbf"/> | ||
+ | <Option key="kernelParamBounds" value="-4,4"/> | ||
+ | <Option key="regParamBounds" value="-5,5"/> | ||
+ | </[[Config:ModelFactory|ModelFactory]]> | ||
+ | |||
+ | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#OptimizeCriterion|OptimizeCriterion]]" combineOutputs="false"> | ||
+ | <Option key="criterion" value="gExpectedImprovement"/> | ||
+ | <Option key="criterion_opts" value="1"/> | ||
+ | |||
+ | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> | ||
+ | <Option key="maxevals" value="1000"/> | ||
+ | <Option key="maxits" value="300"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <Option key="debug" value="off"/> | ||
+ | </[[Config:SampleSelector|SampleSelector]]> | ||
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 806: | Line 997: | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <Option key="runSize" value=" | + | <Option key="runSize" value="20"/> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 834: | Line 1,025: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoverheuristic"/> | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
<Option key="mutationFcn" value="@mutationadaptfeasible"/> | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
<!-- <Option key="creationFcn" value="createInitialPopulation"/> | <!-- <Option key="creationFcn" value="createInitialPopulation"/> | ||
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/>--> |
− | |||
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
Line 851: | Line 1,041: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 857: | Line 1,047: | ||
Use the matlab gads toolbox to select SVM parameters using Pattern Search | Use the matlab gads toolbox to select SVM parameters using Pattern Search | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 863: | Line 1,053: | ||
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
+ | |||
<!--See the interface matlab file and the gads toolbox documentation for more information on the options--> | <!--See the interface matlab file and the gads toolbox documentation for more information on the options--> | ||
− | <Option key="maxIterations" value=" | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> |
− | + | <Option key="maxIterations" value="100"/> | |
− | + | <Option key="maxFunEvals" value="20"/> | |
− | + | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | |
− | + | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | |
− | <[[Config: | + | </[[Config:Optimizer|Optimizer]]> |
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> | ||
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 878: | Line 1,071: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 884: | Line 1,077: | ||
Use the matlab gads toolbox to select SVM parameters using simulated annealing | Use the matlab gads toolbox to select SVM parameters using simulated annealing | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 890: | Line 1,083: | ||
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <!--See the interface matlab file and the gads toolbox documentation for more information on the options--> | + | <!--See the interface matlab file and the gads toolbox documentation for more information on the options--> |
− | <Option key="maxIterations" value=" | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]"> |
− | + | <Option key="maxIterations" value="100"/> | |
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 903: | Line 1,098: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 909: | Line 1,104: | ||
Use the matlab optimization toolbox to select SVM parameters | Use the matlab optimization toolbox to select SVM parameters | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 917: | Line 1,112: | ||
<!--See the interface matlab file and the optimization toolbox documentation for more | <!--See the interface matlab file and the optimization toolbox documentation for more | ||
information on the options--> | information on the options--> | ||
− | <Option key="maxIterations" value=" | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]"> |
− | + | <Option key="maxIterations" value="100"/> | |
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 929: | Line 1,126: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 935: | Line 1,132: | ||
Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization | Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 951: | Line 1,148: | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 960: | Line 1,157: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 974: | Line 1,171: | ||
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> | ||
− | <Option key="maxits" value=" | + | <Option key="maxits" value="100"/> |
− | <Option key="maxevals" value=" | + | <Option key="maxevals" value="20"/> |
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 987: | Line 1,184: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 997: | Line 1,194: | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <Option key="runSize" value=" | + | <Option key="runSize" value="20"/> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 1,008: | Line 1,205: | ||
<Option key="epsilon" value="0"/> | <Option key="epsilon" value="0"/> | ||
<Option key="stoppingTolerance" value="1e-6"/> | <Option key="stoppingTolerance" value="1e-6"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 1,026: | Line 1,223: | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoverheuristic"/> | <Option key="crossoverFcn" value="@crossoverheuristic"/> | ||
<Option key="mutationFcn" value="@mutationadaptfeasible"/> | <Option key="mutationFcn" value="@mutationadaptfeasible"/> | ||
− | + | <!-- <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> --> |
− | |||
<!--Error goal when constructing the network--> | <!--Error goal when constructing the network--> | ||
Line 1,044: | Line 1,240: | ||
<Option key="maxNeurons" value="500"/> | <Option key="maxNeurons" value="500"/> | ||
<Option key="trainingProgress" value="Inf"/> | <Option key="trainingProgress" value="Inf"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 1,050: | Line 1,246: | ||
Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox | Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | <Option key="maxIterations" value=" | + | |
− | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]"> | |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]"> |
<!--Error goal when constructing the network--> | <!--Error goal when constructing the network--> | ||
<Option key="goal" value="0"/> | <Option key="goal" value="0"/> | ||
Line 1,067: | Line 1,266: | ||
<Option key="maxNeurons" value="500"/> | <Option key="maxNeurons" value="500"/> | ||
<Option key="trainingProgress" value="Inf"/> | <Option key="trainingProgress" value="Inf"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 1,073: | Line 1,272: | ||
Build Radial Basis Function Neural networks using Pattern Search | Build Radial Basis Function Neural networks using Pattern Search | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
+ | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]"> | ||
<!--Error goal when constructing the network--> | <!--Error goal when constructing the network--> | ||
<Option key="goal" value="0"/> | <Option key="goal" value="0"/> | ||
Line 1,092: | Line 1,295: | ||
<Option key="maxNeurons" value="500"/> | <Option key="maxNeurons" value="500"/> | ||
<Option key="trainingProgress" value="Inf"/> | <Option key="trainingProgress" value="Inf"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 1,098: | Line 1,301: | ||
Build Radial Basis Function Neural networks using Pattern Search | Build Radial Basis Function Neural networks using Pattern Search | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder# | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"> |
<!-- Re-start strategy for resuming the optimization process between sampling iterations. | <!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | |||
− | |||
− | <[[Config: | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]"> |
+ | <Option key="maxIterations" value="100"/> | ||
+ | <Option key="maxFunEvals" value="20"/> | ||
+ | </[[Config:Optimizer|Optimizer]]> | ||
+ | |||
+ | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]"> | ||
<!--Error goal when constructing the network--> | <!--Error goal when constructing the network--> | ||
<Option key="goal" value="0"/> | <Option key="goal" value="0"/> | ||
Line 1,115: | Line 1,321: | ||
<Option key="maxNeurons" value="500"/> | <Option key="maxNeurons" value="500"/> | ||
<Option key="trainingProgress" value="Inf"/> | <Option key="trainingProgress" value="Inf"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
Line 1,122: | Line 1,328: | ||
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"> | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"> | ||
− | <Option key="runSize" value=" | + | <Option key="runSize" value="20"/> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]"> |
<!--Error goal when constructing the network--> | <!--Error goal when constructing the network--> | ||
<Option key="goal" value="0"/> | <Option key="goal" value="0"/> | ||
Line 1,134: | Line 1,340: | ||
<Option key="maxNeurons" value="500"/> | <Option key="maxNeurons" value="500"/> | ||
<Option key="trainingProgress" value="Inf"/> | <Option key="trainingProgress" value="Inf"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> | ||
=== heterogenetic === | === heterogenetic === | ||
− | A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails. | + | A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails. So this model builder is a way to automatically select the best model type. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"> | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"> | ||
Line 1,152: | Line 1,358: | ||
<Option key="migrationDirection" value="forward"/> | <Option key="migrationDirection" value="forward"/> | ||
<Option key="migrationFraction" value="0.1"/> | <Option key="migrationFraction" value="0.1"/> | ||
− | <Option key="migrationInterval" value=" | + | <Option key="migrationInterval" value="4"/> |
<!-- Do we want to prevent any model type going completely extinct --> | <!-- Do we want to prevent any model type going completely extinct --> | ||
− | <Option key="extinctionPrevention" value=" | + | <Option key="extinctionPrevention" value="yes"/> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#HeterogeneousFactory|HeterogeneousFactory]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
− | |||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#EnsembleFactory|EnsembleFactory]]"> |
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
<!-- the maximum ensemble size --> | <!-- the maximum ensemble size --> | ||
<Option key="maxSize" value="4"/> | <Option key="maxSize" value="4"/> | ||
<!-- Ensemble members should differ this much percent --> | <!-- Ensemble members should differ this much percent --> | ||
<Option key="equalityThreshold" value="0.05"/> | <Option key="equalityThreshold" value="0.05"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
− | <Option key="crossoverFcn" value=" | + | <Option key="crossoverFcn" value="crossover"/> |
− | <Option key="mutationFcn" value=" | + | <Option key="mutationFcn" value="mutation"/> |
− | |||
− | <Option key="backend" value=" | + | <Option key="backend" value="lssvm"/> |
− | |||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
<Option key="kernelParamBounds" value="-4,4"/> | <Option key="kernelParamBounds" value="-4,4"/> | ||
<Option key="regParamBounds" value="-5,5"/> | <Option key="regParamBounds" value="-5,5"/> | ||
− | + | </[[Config:ModelFactory|ModelFactory]]> | |
− | |||
− | |||
− | </[[Config: | ||
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]"> |
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
− | + | <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="creationFcn" value=" | ||
<Option key="weightBounds" value="1,40"/> | <Option key="weightBounds" value="1,40"/> | ||
<Option key="percentBounds" value="1,100"/> | <Option key="percentBounds" value="1,100"/> | ||
<Option key="percentRational" value="70"/> | <Option key="percentRational" value="70"/> | ||
<Option key="frequencyVariable" value="off"/> | <Option key="frequencyVariable" value="off"/> | ||
− | <Option key="basis" value=" | + | <Option key="basis" value="power"/> |
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
− | <[[Config: | + | <[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
− | + | <Option key="creationFcn" value="createInitialPopulation"/> | |
− | <Option key="creationFcn" value=" | ||
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | <[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | ||
Line 1,213: | Line 1,411: | ||
<Option key="regression" value="-1,0,1,2"/> | <Option key="regression" value="-1,0,1,2"/> | ||
<Option key="backend" value="Direct"/> | <Option key="backend" value="Direct"/> | ||
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
− | </[[Config: | + | </[[Config:ModelFactory|ModelFactory]]> |
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | </[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]> | ||
</source> | </source> |
Revision as of 17:14, 17 February 2009
Generated for SUMO toolbox version 6.1. We are well aware that documentation is not always complete and possibly even out of date in some cases. We try to document everything as best we can but much is limited by available time and manpower. We are are a university research group after all. The most up to date documentation can always be found (if not here) in the default.xml configuration file and, of course, in the source files. If something is unclear please dont hesitate to ask.
AdaptiveModelBuilder
rational
Build rational models using a custom stochastic hillclimber to select the model parameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="true">
<!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="30"/>
<!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".99"/>
<!-- Size of the best model history -->
<Option key="historySize" value="15"/>
<!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/>
<!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]">
<!-- Bounds for the weights of the rational modeller -->
<Option key="weightBounds" value="1,40"/>
<!-- Bounds for the percentage of degrees of freedom wrt number of samples -->
<Option key="percentBounds" value="1,100"/>
<!-- Regardless of the percentage bounds, never use more than this many degrees of freedom -->
<Option key="maxDegrees" value="80"/>
<!-- When randomizing rational flags, what percentage should be set -->
<Option key="percentRational" value="70"/>
<!-- If a variable is named "f" of "frequency" it will be modelled differently, if this is set to auto,
- - If this field is set to a variable name, that variable will be considered to be the frequency -->
<Option key="frequencyVariable" value="auto"/>
<!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="power"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rationalgenetic
Build rational models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="restartStrategy" value="continue"/>
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="30"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="20"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="5"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!-- Use the next three functions instead of the previous three if you set the
population type to doubleVector -->
<!--<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>-->
<!-- Bounds for the weights of the rational modeller -->
<Option key="weightBounds" value="1,40"/>
<!-- Bounds for the percentage of degrees of freedom wrt number of samples -->
<Option key="percentBounds" value="1,100"/>
<!-- Regardless of the percentage bounds, never use more than this many degrees of freedom -->
<Option key="maxDegrees" value="80"/>
<!-- When randomizing rational flags, what percentage should be set -->
<Option key="percentRational" value="70"/>
<!-- If a variable is named "f" of "frequency"
it will be modelled differently, if this is set to auto -->
<!-- If this field is set to a variable name, that variable will be considered to be the frequency -->
<Option key="frequencyVariable" value="auto"/>
<!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="power"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rationalpso
Generate Rational models using PSO
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]">
<!-- Bounds for the weights of the rational modeller -->
<Option key="weightBounds" value="1,40"/>
<!-- Bounds for the percentage of degrees of freedom wrt number of samples -->
<Option key="percentBounds" value="1,100"/>
<!-- Regardless of the percentage bounds, never use more than this many degrees of freedom -->
<Option key="maxDegrees" value="80"/>
<!-- When randomizing rational flags, what percentage should be set -->
<Option key="percentRational" value="70"/>
<!-- If a variable is named "f" of "frequency"
it will be modelled differently, if this is set to auto -->
<!-- If this field is set to a variable name, that variable will be considered to be the frequency -->
<Option key="frequencyVariable" value="auto"/>
<!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="power"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
polynomialfixed
Build polynomial models with a fixed order
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false">
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#PolynomialFactory|PolynomialFactory]]">
<!-- Specifies the structure of the polynomial -->
<!-- Expects matlab matrix: Element (i,j) is the exponent of variable i for term j. -->
<Option key="degrees" value="[0 0;1 0;0 1;1 1;2 0;0 2;2 2]"/> <!-- Equals to 1+x+y+xy+xx+yy+xxyy -->
<!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="power"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbf
Build Radial Basis Function models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false">
<!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="20"/>
<!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".9"/>
<!-- Size of the best model history -->
<Option key="historySize" value="15"/>
<!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/>
<!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="RBF"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<!--<[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfgenetic
Build Radial Basis Function models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<Option key="restartStrategy" value="continue"/>
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="RBF"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!-- Bounds for the shape parameter -->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<!-- <[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<!-- Basisfunction, one of 'multiquadric', 'triharmonic', 'biharmonic' -->
<!-- Specify which implementation to use, currently, 'Direct', 'AP', 'Greedy' and
'FastRBF' are supported.
'Direct' solves the direct problem by inverting the interpolation
matrix
'AP' uses an alternating projections method when the system gets
too large. This is *MUCH* slower than 'Direct', and doesn't
guarantee convergence, use with caution
'Greedy' uses a one point greedy algorithm for selecting the
interpolation centers. Same remark applies as with 'AP'
'FastRBF' interfaces the FastRBF library. When using FastRBF,
make sure your copy of the software is installed under
the src/matlab/contrib directory and that the software
is licensed properly.
The FastRBF matlab toolbox can be found at
http://www.farfieldtechnology.com
-->
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
dace
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false">
<!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="20"/>
<!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".9"/>
<!-- Size of the best model history -->
<Option key="historySize" value="15"/>
<!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/>
<!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="DACE"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<!--<[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
dacegenetic
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="DACE"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!-- Bounds for the shape parameter -->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<!-- <[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
daceps
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="DACE"/>
<!--Option key="multipleBasisFunctionsAllowed" value="false"/-->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
gpps
Build GP models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#GaussianProcessFactory|GaussianProcessFactory]]">
<Option key="covFunction" value="covSEiso"/>
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
gpgenetic
Build Gaussian Process models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#GaussianProcessFactory|GaussianProcessFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!--
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
-->
<Option key="covFunction" value="covSEiso"/>
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
dacepso
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="DACE"/>
<!--Option key="multipleBasisFunctionsAllowed" value="false"/-->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingsim
Build kriging models using Simulated Annealing The kriging models are implemented using The DACE Toolbox from http://www2.imm.dtu.dk/~hbn/dace
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<!-- See the DACE Toolbox documentaion for possible regression and correlation functions -->
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingps
Build kriging models using pattern search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingoptim
Build kriging models using the matlab optimization toolbox
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
kriginggenetic
Build kriging models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- If you specify "custom" as the population type you will be evolving models
and will use the genetic operators defined in the KrigingFactory class -->
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!-- <Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/> -->
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingpso
Build kriging models using PSO
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingnsga
Build kriging models using NSGA-II, requires a multi-output or multi-measure setup
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#ParetoModelBuilder|ParetoModelBuilder]]" combineOutputs="true">
<Option key="restartStrategy" value="model"/>
<Option key="populationSize" value="30"/>
<Option key="maxGenerations" value="30"/>
<Option key="plotParetoFront" value="false"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingrandom
Build kriging models randomly
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!-- Build 100 random models before restarting -->
<Option key="runSize" value="100"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly1"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
blindkriging
Build blind kriging models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false">
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="correlationFunction" value="corrgauss"/>
<Option key="backend" value="blind"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
kriging
Build kriging models using the maximum likelihood to set the thetas
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false">
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#KrigingFactory|KrigingFactory]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="correlationFunction" value="correxp"/>
<Option key="backend" value="dace"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesgenetic
Build spline models with the genetic modelbuilder
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!-- <Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/> -->
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinessim
Build spline models using the Simulated Annealing modelbuilder
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesps
Build spline models using the Pattern Search modelbuilder
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesoptim
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SplineFactory|SplineFactory]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
anngenetic
Use the matlab gads toolbox to select ANN parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="continue"/>
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!--initial hidden layer dimension-->
<Option key="initialSize" value="3,3"/>
<!--comma separated list of allowed learning rules-->
<Option key="allowedLearningRules" value="trainbr"/>
<!--performance function to use, empty uses training rule default default-->
<Option key="performFcn" value=""/>
<!--how many epochs to train for-->
<Option key="epochs" value="300"/>
<!--max time to train for-->
<Option key="trainingTime" value="Inf"/>
<!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/>
<!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,3"/>
<!--train until the error reaches this goal-->
<Option key="trainingGoal" value="0"/>
<!--show training progress every x epochs, set to NaN to disable-->
<Option key="trainingProgress" value="NaN"/>
<!--How to train the network, one of 'auto' or 'earlyStopping'
auto: train with early stopping unless regularization is employed
Set to any other value for simply training on all the data, doing nothing special -->
<Option key="trainMethod" value="auto"/>
<!--the training set - validation set - testset ratios-->
<Option key="earlyStoppingRatios" value="0.80,0.20,0"/>
<!-- Transfer function to use for all hidden layers and the output layer
So should be a list of max 2 items -->
<Option key="transferFunctionTemplate" value="tansig,purelin"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
annfixed
Fixed ANN model builder, allows you to choose the hidden layer structure manually Thus there is no optimization algorithm involved.
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#AdaptiveModelBuilder|AdaptiveModelBuilder]]" combineOutputs="false">
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]">
<Option key="allowedLearningRules" value="trainbr"/>
<Option key="initialSize" value="3,3"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
annrandom
Random ANN model builder, usefull as a baseline comparison
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<!--This many iterations before allowing new samples-->
<Option key="runSize" value="10"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#ANNFactory|ANNFactory]]">
<Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
fanngenetic
Use the matlab gads toolbox to select ANN parameters using a GA (based on the FANN library)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="continue"/>
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#FANNFactory|FANNFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!--initial hidden layer dimension-->
<Option key="initialSize" value="4,4"/>
<!--how many epochs to train for-->
<Option key="epochs" value="1500"/>
<!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/>
<!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,2"/>
<!--train until the error reaches this goal-->
<Option key="trainingGoal" value="0"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
nanngenetic
Use the matlab gads toolbox to select ANN parameters using a GA (based on the NNSYSID library)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="continue"/>
<!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#NANNFactory|NANNFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<!--initial hidden layer dimension-->
<Option key="initialSize" value="10"/>
<!--how many epochs to train for-->
<Option key="epochs" value="500"/>
<!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/>
<!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,3"/>
<!-- pruning techniques used : 0: none, 1: Mag Threshold, 2: Iterative Mag, 3: OBD, 4: OBS -->
<Option key="allowedPruneTechniques" value="0,1,2,3,4"/>
<!-- threshold for magnitude based pruning -->
<Option key="threshold" value="0.2"/>
<!-- retrain epochs while pruning-->
<Option key="retrain" value="50"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmgenetic
Use the matlab gads toolbox to select LSSVM parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!-- <Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/> -->
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmps
Use the matlab gads toolbox to select LSSVM parameters using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See that matlab gads toolbox documentation for more information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmoptim
Use the matlab optimization toolbox to select LSSVM parameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the optimization toolbox documentation for more information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmpso
Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmsim
Use the matlab gads toolbox to select LSSVM parameters using simulated annealing
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmdirect
Use the DIviding RECtangles algorithm to optimize the LS-SVM hyperparameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxits" value="100"/>
<Option key="maxevals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmego
Generate LS-SVM models using EGO
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#EGOModelBuilder|EGOModelBuilder]]" combineOutputs="false">
<Option key="numIterations" value="10"/>
<Option key="initPopSize" value="5"/>
<Option key="restartStrategy" value="continue"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#OptimizeCriterion|OptimizeCriterion]]" combineOutputs="false">
<Option key="criterion" value="gExpectedImprovement"/>
<Option key="criterion_opts" value="1"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxevals" value="1000"/>
<Option key="maxits" value="300"/>
</[[Config:Optimizer|Optimizer]]>
<Option key="debug" value="off"/>
</[[Config:SampleSelector|SampleSelector]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmrandom
Generate random LSSVM models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<Option key="runSize" value="20"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmgenetic
Use the matlab gads toolbox to select SVM parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!-- <Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>-->
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmps
Use the matlab gads toolbox to select SVM parameters using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmsim
Use the matlab gads toolbox to select SVM parameters using simulated annealing
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmoptim
Use the matlab optimization toolbox to select SVM parameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<!--See the interface matlab file and the optimization toolbox documentation for more
information on the options-->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmpso
Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmdirect
Use the DIviding RECtangles algorithm to optimize the SVM hyperparameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxits" value="100"/>
<Option key="maxevals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmrandom
Generate random SVMs
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<Option key="runSize" value="20"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnngenetic
Genetic model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoverheuristic"/>
<Option key="mutationFcn" value="@mutationadaptfeasible"/>
<!-- <Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/> -->
<!--Error goal when constructing the network-->
<Option key="goal" value="0"/>
<!--Initial value for the spread -->
<Option key="spread" value="1"/>
<!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,30"/>
<!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="500"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnoptim
Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabOptimizer|MatlabOptimizer]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]">
<!--Error goal when constructing the network-->
<Option key="goal" value="0"/>
<!--Initial value for the spread -->
<Option key="spread" value="1"/>
<!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,30"/>
<!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="500"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnps
Build Radial Basis Function Neural networks using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabPatternSearch|MatlabPatternSearch]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]">
<!--Error goal when constructing the network-->
<Option key="goal" value="0"/>
<!--Initial value for the spread -->
<Option key="spread" value="1"/>
<!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,30"/>
<!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="500"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnsim
Build Radial Basis Function Neural networks using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false">
<!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabSimAnnealing|MatlabSimAnnealing]]">
<Option key="maxIterations" value="100"/>
<Option key="maxFunEvals" value="20"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]">
<!--Error goal when constructing the network-->
<Option key="goal" value="0"/>
<!--Initial value for the spread -->
<Option key="spread" value="1"/>
<!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,30"/>
<!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="500"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnrandom
Build random RBF neural networks
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<Option key="runSize" value="20"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RBFNNFactory|RBFNNFactory]]">
<!--Error goal when constructing the network-->
<Option key="goal" value="0"/>
<!--Initial value for the spread -->
<Option key="spread" value="1"/>
<!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,30"/>
<!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="500"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
heterogenetic
A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails. So this model builder is a way to automatically select the best model type.
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<Option key="restartStrategy" value="continue"/>
<Option key="populationType" value="custom"/>
<!-- the population size must match the number of model interfaces minus 1 -->
<Option key="populationSize" value="10,10,10"/>
<Option key="maxGenerations" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<Option key="migrationDirection" value="forward"/>
<Option key="migrationFraction" value="0.1"/>
<Option key="migrationInterval" value="4"/>
<!-- Do we want to prevent any model type going completely extinct -->
<Option key="extinctionPrevention" value="yes"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#HeterogeneousFactory|HeterogeneousFactory]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#EnsembleFactory|EnsembleFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<!-- the maximum ensemble size -->
<Option key="maxSize" value="4"/>
<!-- Ensemble members should differ this much percent -->
<Option key="equalityThreshold" value="0.05"/>
</[[Config:ModelFactory|ModelFactory]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#SVMFactory|SVMFactory]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelFactory|ModelFactory]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#RationalFactory|RationalFactory]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="weightBounds" value="1,40"/>
<Option key="percentBounds" value="1,100"/>
<Option key="percentRational" value="70"/>
<Option key="frequencyVariable" value="off"/>
<Option key="basis" value="power"/>
</[[Config:ModelFactory|ModelFactory]]>
<[[Config:ModelFactory|ModelFactory]] type="[[ModelFactory#BFFactory|BFFactory]]">
<Option key="type" value="RBF"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="creationFcn" value="createInitialPopulation"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="Direct"/>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:ModelFactory|ModelFactory]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>