Difference between revisions of "Config:SequentialDesign"
From SUMOwiki
Jump to navigationJump to searchm |
|||
Line 2: | Line 2: | ||
=== empty === | === empty === | ||
− | Dont select any new samples, useful when modeling multiple outputs in | + | Dont select any new samples, useful when modeling multiple outputs in parallel. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/> | ||
</source> | </source> | ||
=== random === | === random === | ||
− | Each sampling iterations new samples are selected randomly | + | Each sampling iterations new samples are selected randomly. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/> | ||
</source> | </source> | ||
=== combo === | === combo === | ||
− | Allows you combine multiple sample selector algorithms | + | Allows you combine multiple sample selector algorithms. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false"> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false"> | ||
Line 42: | Line 42: | ||
</source> | </source> | ||
=== delaunay === | === delaunay === | ||
− | An adaptive sample selection algorithm that does a trade-off between error and density | + | An adaptive sample selection algorithm that does a trade-off between error and density. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false"> | ||
Line 62: | Line 62: | ||
</source> | </source> | ||
=== density === | === density === | ||
− | A simple density based sample selection algorithm | + | A simple density based sample selection algorithm. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/> | ||
</source> | </source> | ||
=== error === | === error === | ||
− | An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid | + | An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false"> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false"> | ||
Line 85: | Line 85: | ||
</source> | </source> | ||
=== gradient === | === gradient === | ||
− | A highly adaptive sampling algorithm, error and density based | + | A highly adaptive sampling algorithm, error and density based. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false"> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false"> | ||
Line 93: | Line 93: | ||
</source> | </source> | ||
=== isc === | === isc === | ||
− | A sampling algorithm aimed at optimization problems | + | A sampling algorithm aimed at optimization problems. |
<source xmlns:saxon="http://icl.com/saxon" lang="xml"> | <source xmlns:saxon="http://icl.com/saxon" lang="xml"> | ||
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false"> | <[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false"> |
Revision as of 10:05, 24 April 2008
SampleSelector
empty
Dont select any new samples, useful when modeling multiple outputs in parallel.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#EmptySampleSelector|EmptySampleSelector]]" combineOutputs="false"/>
random
Each sampling iterations new samples are selected randomly.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RandomSampleSelector|RandomSampleSelector]]" combineOutputs="false"/>
combo
Allows you combine multiple sample selector algorithms.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#CombinedSampleSelector|CombinedSampleSelector]]" combineOutputs="false">
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#RationalPoleSuppressionSampleSelector|RationalPoleSuppressionSampleSelector]]" combineOutputs="false">
<!-- Currently no options are available, if the model is a rational model, and a
- - pole is found (using a simple search strategy), the pole is returned -->
</[[Config:SampleSelector|SampleSelector]]>
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false">
<!-- One of all, data -->
<Option key="sampleSelect" value="all"/>
<!-- Integer between 2 and 20 -->
<Option key="nLastModels" value="2"/>
<!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
<Option key="scoreFunction" value="weightedLinear"/>
<!-- Weighting for weightedLinear -->
<Option key="lambda" value="0.5"/>
<!-- Weighting for weightedGeometric -->
<Option key="mu" value="0.5"/>
<!-- One of none, max, cap, capmax -->
<Option key="volumeScaling" value="max"/>
<Option key="differenceScaling" value="capmax"/>
<!-- Boolean flag, if set all points closer than snapThreshold to the boundary of
- - the domain are clipped to the boundary -->
<Option key="snapToEdge" value="enable"/>
<Option key="snapThreshold" value=".05"/>
</[[Config:SampleSelector|SampleSelector]]>
</[[Config:SampleSelector|SampleSelector]]>
delaunay
An adaptive sample selection algorithm that does a trade-off between error and density.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DelaunaySampleSelector|DelaunaySampleSelector]]" combineOutputs="false">
<!-- One of all, data -->
<Option key="sampleSelect" value="all"/>
<!-- Integer between 2 and 20 -->
<Option key="nLastModels" value="2"/>
<!-- One of densityBased, differenceBased, weightedLinear, weightedGeometric -->
<Option key="scoreFunction" value="weightedLinear"/>
<Option key="lambda" value="0.5"/>
<Option key="mu" value="0.5"/>
<!-- One of none, max, cap, capmax -->
<Option key="volumeScaling" value="max"/>
<Option key="differenceScaling" value="capmax"/>
<!-- Boolean flag -->
<Option key="snapToEdge" value="enable"/>
<Option key="snapThreshold" value=".2"/>
</[[Config:SampleSelector|SampleSelector]]>
density
A simple density based sample selection algorithm.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#DensitySampleSelector|DensitySampleSelector]]" combineOutputs="false"/>
error
An adaptive sample selection algorithm (error based), driven by the evaluation of your model on a dense grid.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#ErrorSampleSelector|ErrorSampleSelector]]" combineOutputs="false">
<!-- Integer between 2 and 20 -->
<Option key="nLastModels" value="4"/>
<!-- One of none, max, cap, capmax -->
<Option key="differenceScaling" value="none"/>
<!-- Gridsize to evaluate on, one of int or array of dimension length -->
<Option key="gridSize" value="50"/>
<!-- Maximum total points to evaluate, distributed over dimensions -->
<Option key="maxGridSize" value="100000"/>
<!-- Closeness threshold, Double -->
<Option key="closenessThreshold" value="0.2"/>
<!-- Set a % of the maximumSamples to randomly chosen -->
<Option key="randomPercentage" value="20"/>
</[[Config:SampleSelector|SampleSelector]]>
gradient
A highly adaptive sampling algorithm, error and density based.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#GradientSampleSelector|GradientSampleSelector]]" combineOutputs="false">
<!-- Integer between 2 and 20 -->
<Option key="neighbourhoodSize" value="2"/>
</[[Config:SampleSelector|SampleSelector]]>
isc
A sampling algorithm aimed at optimization problems.
<[[Config:SampleSelector|SampleSelector]] type="[[SampleSelector#InfillSamplingCriterion|InfillSamplingCriterion]]" combineOutputs="false">
<!-- A criterion determines the interesting regions to sample -->
<!-- Choose 1 from the following: -->
<Option key="criterion" value="gei"/> <!-- generalized expected improvement -->
<Option key="g" value="1"/> <!-- balanced local-global search -->
<!--<Option key="criterion" value="wei" />--> <!-- weighted expected improvement -->
<!--<Option key="w" value="0.5" />--> <!-- weight, 0 is global search, 1 is local search -->
<!--<Option key="criterion" value="ei" />--> <!-- expected improvement -->
<!--<Option key="criterion" value="kushner" />--> <!-- kushner -->
<!--<Option key="eps" value="0.001" />-->
<!--<Option key="criterion" value="lcb" />--> <!-- lower confidence bound function -->
<!--<Option key="lcb" value="2.0" />-->
<!--<Option key="criterion" value="maxvar" />--> <!-- maximizes variation -->
<!-- Watson and Barnes criterions -->
<!--<Option key="criterion" value="wb1" />--> <!-- threshold-bounded extreme -->
<!--<Option key="criterion" value="wb2" />--> <!-- regional extreme -->
<!--<Option key="criterion" value="crowdedness" />--> <!-- crowdedness function -->
<!-- This criterion has to be solved to choose new samples, one can choose the optimizer used here -->
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxevals" value="1000"/>
<Option key="maxits" value="300"/>
</[[Config:Optimizer|Optimizer]]>
<!--
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#MatlabGA|MatlabGA]]">
</[[Config:Optimizer|Optimizer]]>
-->
<!--
when debug is 'on' a contour plot of the ISC function is drawn every iteration.
Together with the current samples and the chosen samples
-->
<Option key="debug" value="on"/>
</[[Config:SampleSelector|SampleSelector]]>