Difference between revisions of "Config:ModelBuilder"
m |
m |
||
Line 4: | Line 4: | ||
Build rational models | Build rational models | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples --> |
<Option key="maximumRunLength" value="30"/><!-- Degeneration of score if a model gets older --> | <Option key="maximumRunLength" value="30"/><!-- Degeneration of score if a model gets older --> | ||
<Option key="decay" value=".99"/><!-- Size of the best model history --> | <Option key="decay" value=".99"/><!-- Size of the best model history --> | ||
Line 10: | Line 10: | ||
- - when set to last, the last `historySize' models are kept --> | - - when set to last, the last `historySize' models are kept --> | ||
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | <Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalSequentialInterface|RationalSequentialInterface]]"><!-- Bounds for the weights of the rational modeller --> |
<Option key="weightBounds" value="1,40"/><!-- Bounds for the percentage of degrees of freedom wrt number of samples --> | <Option key="weightBounds" value="1,40"/><!-- Bounds for the percentage of degrees of freedom wrt number of samples --> | ||
<Option key="percentBounds" value="1,100"/><!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | <Option key="percentBounds" value="1,100"/><!-- Regardless of the percentage bounds, never use more than this many degrees of freedom --> | ||
Line 24: | Line 24: | ||
Build rational models using a genetic algorithm | Build rational models using a genetic algorithm | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options--> |
<Option key="populationType" value="custom"/> | <Option key="populationType" value="custom"/> | ||
<Option key="populationSize" value="15"/> | <Option key="populationSize" value="15"/> | ||
Line 32: | Line 32: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalGeneticInterface|RationalGeneticInterface]]"> |
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
Line 50: | Line 50: | ||
Build Radial Basis Function models | Build Radial Basis Function models | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples --> |
<Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older --> | <Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older --> | ||
<Option key="decay" value=".9"/><!-- Size of the best model history --> | <Option key="decay" value=".9"/><!-- Size of the best model history --> | ||
Line 56: | Line 56: | ||
- - when set to last, the last `historySize' models are kept --> | - - when set to last, the last `historySize' models are kept --> | ||
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | <Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFSequentialInterface|BFSequentialInterface]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | <[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | ||
Line 69: | Line 69: | ||
Build Radial Basis Function models using a genetic algorithm | Build Radial Basis Function models using a genetic algorithm | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options--> |
<Option key="populationType" value="custom"/> | <Option key="populationType" value="custom"/> | ||
<Option key="populationSize" value="15"/> | <Option key="populationSize" value="15"/> | ||
Line 77: | Line 77: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
Line 110: | Line 110: | ||
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples --> |
<Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older --> | <Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older --> | ||
<Option key="decay" value=".9"/><!-- Size of the best model history --> | <Option key="decay" value=".9"/><!-- Size of the best model history --> | ||
Line 116: | Line 116: | ||
- - when set to last, the last `historySize' models are kept --> | - - when set to last, the last `historySize' models are kept --> | ||
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | <Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> --> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFSequentialInterface|BFSequentialInterface]]"> |
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | <[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | ||
Line 129: | Line 129: | ||
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options--> |
<Option key="populationType" value="custom"/> | <Option key="populationType" value="custom"/> | ||
<Option key="populationSize" value="15"/> | <Option key="populationSize" value="15"/> | ||
Line 137: | Line 137: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]"> |
<Option key="type" value="DACE"/> | <Option key="type" value="DACE"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
Line 154: | Line 154: | ||
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 162: | Line 162: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFOptimizationInterface|BFOptimizationInterface]]"> |
<Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/--> | <Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/--> | ||
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | <[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | ||
Line 173: | Line 173: | ||
Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | Build DACE models (= functionally equivalent to Kriging, but a custom implementation) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="true"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="true"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]"> |
<Option key="typePSO" value="0"/> | <Option key="typePSO" value="0"/> | ||
<Option key="seedPSO" value="1"/> | <Option key="seedPSO" value="1"/> | ||
Line 185: | Line 185: | ||
<Option key="gradientTermination" value="8"/> | <Option key="gradientTermination" value="8"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFOptimizationInterface|BFOptimizationInterface]]"> |
<Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/--> | <Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/--> | ||
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | <[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/> | ||
Line 196: | Line 196: | ||
Build kriging models using Simulated Annealing (requires matlab v7.4) | Build kriging models using Simulated Annealing (requires matlab v7.4) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 202: | Line 202: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
Line 213: | Line 213: | ||
Build kriging models using pattern search | Build kriging models using pattern search | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 221: | Line 221: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
Line 232: | Line 232: | ||
Build kriging models using the matlab optimization toolbox | Build kriging models using the matlab optimization toolbox | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 238: | Line 238: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
Line 249: | Line 249: | ||
Build kriging models using a genetic algorithm | Build kriging models using a genetic algorithm | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
Line 260: | Line 260: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingGeneticInterface|KrigingGeneticInterface]]"> |
<Option key="creationFcn" value="@gacreationuniform"/> | <Option key="creationFcn" value="@gacreationuniform"/> | ||
<Option key="crossoverFcn" value="@crossoversinglepoint"/> | <Option key="crossoverFcn" value="@crossoversinglepoint"/> | ||
Line 275: | Line 275: | ||
Build kriging models using PSO | Build kriging models using PSO | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | <Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations. | ||
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]"> |
<Option key="typePSO" value="0"/> | <Option key="typePSO" value="0"/> | ||
<Option key="seedPSO" value="1"/> | <Option key="seedPSO" value="1"/> | ||
Line 287: | Line 287: | ||
<Option key="gradientTermination" value="8"/> | <Option key="gradientTermination" value="8"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
Line 298: | Line 298: | ||
Build kriging models randomly | Build kriging models randomly | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> |
<Option key="runSize" value="100"/> | <Option key="runSize" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]"> |
<Option key="lowerThetaBound" value="-5"/> | <Option key="lowerThetaBound" value="-5"/> | ||
<Option key="upperThetaBound" value="3"/> | <Option key="upperThetaBound" value="3"/> | ||
Line 311: | Line 311: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"> |
<Option key="maximumRunLength" value="30"/> | <Option key="maximumRunLength" value="30"/> | ||
<Option key="decay" value=".99"/> | <Option key="decay" value=".99"/> | ||
<Option key="historySize" value="15"/> | <Option key="historySize" value="15"/> | ||
<Option key="strategy" value="best"/> | <Option key="strategy" value="best"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineSequentialInterface|SplineSequentialInterface]]"> |
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
Line 324: | Line 324: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
Line 334: | Line 334: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineGeneticInterface|SplineGeneticInterface]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
Line 346: | Line 346: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]"> |
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
Line 359: | Line 359: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
Line 366: | Line 366: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]"> |
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
Line 374: | Line 374: | ||
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]"> |
<Option key="smoothingBounds" value="0,1"/> | <Option key="smoothingBounds" value="0,1"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
Line 387: | Line 387: | ||
Maintain a population (batch) of feedforward neural networks and mutation to search the parameter space See the matlab neural network toolbox for more information | Maintain a population (batch) of feedforward neural networks and mutation to search the parameter space See the matlab neural network toolbox for more information | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#BatchModelBuilder|BatchModelBuilder]]" combineOutputs="false"> |
<Option key="batchSize" value="10"/><!--One adaptive modeling iteration stops after one of the following two thresholds have been reached--> | <Option key="batchSize" value="10"/><!--One adaptive modeling iteration stops after one of the following two thresholds have been reached--> | ||
<Option key="maxBatches" value="10"/> | <Option key="maxBatches" value="10"/> | ||
<Option key="maxBatchesNoImprovement" value="4"/> | <Option key="maxBatchesNoImprovement" value="4"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNBatchInterface|ANNBatchInterface]]"><!--initial hidden layer dimension--> |
<Option key="initialSize" value="3,3"/><!--comma separated list of allowed learning rules--> | <Option key="initialSize" value="3,3"/><!--comma separated list of allowed learning rules--> | ||
<Option key="allowedLearningRules" value="trainbr"/><!--performance function to use, empty uses training rule default default--> | <Option key="allowedLearningRules" value="trainbr"/><!--performance function to use, empty uses training rule default default--> | ||
Line 413: | Line 413: | ||
Use the matlab gads toolbox to select ANN parameters using a GA | Use the matlab gads toolbox to select ANN parameters using a GA | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | <Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | ||
Line 423: | Line 423: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNGeneticInterface|ANNGeneticInterface]]"> |
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
<Option key="mutationFcn" value="simpleMutation"/> | <Option key="mutationFcn" value="simpleMutation"/> | ||
Line 449: | Line 449: | ||
Random ANN model builder, usefull as a baseline comparison | Random ANN model builder, usefull as a baseline comparison | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"><!--This many iterations before allowing new samples--> |
<Option key="runSize" value="10"/> | <Option key="runSize" value="10"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNInterface|ANNInterface]]"> |
<Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/> | <Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
Line 459: | Line 459: | ||
Use the matlab gads toolbox to select ANN parameters using a GA (based on the FANN library) | Use the matlab gads toolbox to select ANN parameters using a GA (based on the FANN library) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | <Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | ||
Line 469: | Line 469: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#FANNGeneticInterface|FANNGeneticInterface]]"> |
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
<Option key="mutationFcn" value="simpleMutation"/> | <Option key="mutationFcn" value="simpleMutation"/> | ||
Line 485: | Line 485: | ||
Use the matlab gads toolbox to select ANN parameters using a GA (based on the NNSYSID library) | Use the matlab gads toolbox to select ANN parameters using a GA (based on the NNSYSID library) | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | <Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options--> | ||
Line 495: | Line 495: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#NANNGeneticInterface|NANNGeneticInterface]]"> |
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
<Option key="mutationFcn" value="simpleMutation"/> | <Option key="mutationFcn" value="simpleMutation"/> | ||
Line 513: | Line 513: | ||
Use the matlab gads toolbox to select LSSVM parameters using a GA | Use the matlab gads toolbox to select LSSVM parameters using a GA | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 524: | Line 524: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]"><!--<Option key="creationFcn" value="@gacreationuniform"/> |
<Option key="crossoverFcn" value="@crossoversinglepoint"/> | <Option key="crossoverFcn" value="@crossoversinglepoint"/> | ||
<Option key="mutationFcn" value="@mutationgaussian"/>--> | <Option key="mutationFcn" value="@mutationgaussian"/>--> | ||
Line 541: | Line 541: | ||
Use the matlab gads toolbox to select LSSVM parameters using Pattern Search | Use the matlab gads toolbox to select LSSVM parameters using Pattern Search | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 549: | Line 549: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 560: | Line 560: | ||
Use the matlab optimization toolbox to select LSSVM parameters | Use the matlab optimization toolbox to select LSSVM parameters | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 566: | Line 566: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 577: | Line 577: | ||
Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization | Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]"> |
<Option key="typePSO" value="0"/> | <Option key="typePSO" value="0"/> | ||
<Option key="seedPSO" value="1"/> | <Option key="seedPSO" value="1"/> | ||
Line 589: | Line 589: | ||
<Option key="gradientTermination" value="8"/> | <Option key="gradientTermination" value="8"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 600: | Line 600: | ||
Use the matlab gads toolbox to select LSSVM parameters using simulated annealing | Use the matlab gads toolbox to select LSSVM parameters using simulated annealing | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 606: | Line 606: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 617: | Line 617: | ||
Use the DIviding RECtangles algorithm to optimize the LS-SVM hyperparameters | Use the DIviding RECtangles algorithm to optimize the LS-SVM hyperparameters | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> |
<Option key="maxits" value="500"/> | <Option key="maxits" value="500"/> | ||
<Option key="maxevals" value="100"/> | <Option key="maxevals" value="100"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 636: | Line 636: | ||
Generate random LSSVM models | Generate random LSSVM models | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"> |
<Option key="runSize" value="100"/> | <Option key="runSize" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="lssvm"/> | <Option key="backend" value="lssvm"/> | ||
<Option key="kernel" value="rbf"/> | <Option key="kernel" value="rbf"/> | ||
Line 649: | Line 649: | ||
Use the matlab gads toolbox to select SVM parameters using a GA | Use the matlab gads toolbox to select SVM parameters using a GA | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 660: | Line 660: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]"><!--<Option key="creationFcn" value="@gacreationuniform"/> |
<Option key="crossoverFcn" value="@crossoversinglepoint"/> | <Option key="crossoverFcn" value="@crossoversinglepoint"/> | ||
<Option key="mutationFcn" value="@mutationgaussian"/>--> | <Option key="mutationFcn" value="@mutationgaussian"/>--> | ||
Line 681: | Line 681: | ||
Use the matlab gads toolbox to select SVM parameters using Pattern Search | Use the matlab gads toolbox to select SVM parameters using Pattern Search | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 689: | Line 689: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 704: | Line 704: | ||
Use the matlab gads toolbox to select SVM parameters using simulated annealing | Use the matlab gads toolbox to select SVM parameters using simulated annealing | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 710: | Line 710: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 725: | Line 725: | ||
Use the matlab optimization toolbox to select SVM parameters | Use the matlab optimization toolbox to select SVM parameters | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
Line 732: | Line 732: | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 747: | Line 747: | ||
Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization | Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]"> |
<Option key="typePSO" value="0"/> | <Option key="typePSO" value="0"/> | ||
<Option key="seedPSO" value="1"/> | <Option key="seedPSO" value="1"/> | ||
Line 759: | Line 759: | ||
<Option key="gradientTermination" value="8"/> | <Option key="gradientTermination" value="8"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 774: | Line 774: | ||
Use the DIviding RECtangles algorithm to optimize the SVM hyperparameters | Use the DIviding RECtangles algorithm to optimize the SVM hyperparameters | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | <Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) --> | ||
<Option key="plotOptimSurface" value="false"/> | <Option key="plotOptimSurface" value="false"/> | ||
− | <[[Config:Optimizer|Optimizer]] type="[[Optimizer | + | <[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]"> |
<Option key="maxits" value="500"/> | <Option key="maxits" value="500"/> | ||
<Option key="maxevals" value="100"/> | <Option key="maxevals" value="100"/> | ||
</[[Config:Optimizer|Optimizer]]> | </[[Config:Optimizer|Optimizer]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 797: | Line 797: | ||
Generate random SVMs | Generate random SVMs | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"> |
<Option key="runSize" value="100"/> | <Option key="runSize" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]"> |
<Option key="backend" value="libSVM"/> | <Option key="backend" value="libSVM"/> | ||
<Option key="type" value="epsilon-SVR"/> | <Option key="type" value="epsilon-SVR"/> | ||
Line 814: | Line 814: | ||
Batch model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information | Batch model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#BatchModelBuilder|BatchModelBuilder]]" combineOutputs="false"> |
<Option key="maxBatches" value="10"/> | <Option key="maxBatches" value="10"/> | ||
<Option key="maxBatchesNoImprovement" value="3"/> | <Option key="maxBatchesNoImprovement" value="3"/> | ||
<Option key="batchSize" value="10"/> | <Option key="batchSize" value="10"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNBatchInterface|RBFNNBatchInterface]]"><!--Error goal when constructing the network--> |
<Option key="goal" value="0"/><!--Initial value for the spread --> | <Option key="goal" value="0"/><!--Initial value for the spread --> | ||
<Option key="spread" value="1"/><!--Spread bounds --> | <Option key="spread" value="1"/><!--Spread bounds --> | ||
Line 830: | Line 830: | ||
Genetic model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information | Genetic model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
Line 840: | Line 840: | ||
<Option key="stallGenLimit" value="4"/> | <Option key="stallGenLimit" value="4"/> | ||
<Option key="stallTimeLimit" value="Inf"/> | <Option key="stallTimeLimit" value="Inf"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNGeneticInterface|RBFNNGeneticInterface]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
Line 856: | Line 856: | ||
Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox | Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
<Option key="maxIterations" value="300"/> | <Option key="maxIterations" value="300"/> | ||
<Option key="maxFunEvals" value="300"/> | <Option key="maxFunEvals" value="300"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network--> |
<Option key="goal" value="0"/><!--Initial value for the spread --> | <Option key="goal" value="0"/><!--Initial value for the spread --> | ||
<Option key="spread" value="1"/><!--Spread bounds --> | <Option key="spread" value="1"/><!--Spread bounds --> | ||
Line 873: | Line 873: | ||
Build Radial Basis Function Neural networks using Pattern Search | Build Radial Basis Function Neural networks using Pattern Search | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
Line 880: | Line 880: | ||
<Option key="searchMethod" value="GPSPositiveBasis2N"/> | <Option key="searchMethod" value="GPSPositiveBasis2N"/> | ||
<Option key="pollMethod" value="MADSPositiveBasis2N"/> | <Option key="pollMethod" value="MADSPositiveBasis2N"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network--> |
<Option key="goal" value="0"/><!--Initial value for the spread --> | <Option key="goal" value="0"/><!--Initial value for the spread --> | ||
<Option key="spread" value="1"/><!--Spread bounds --> | <Option key="spread" value="1"/><!--Spread bounds --> | ||
Line 892: | Line 892: | ||
Build Radial Basis Function Neural networks using Pattern Search | Build Radial Basis Function Neural networks using Pattern Search | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations. |
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information --> | ||
<Option key="restartStrategy" value="intelligent"/> | <Option key="restartStrategy" value="intelligent"/> | ||
<Option key="maxIterations" value="500"/> | <Option key="maxIterations" value="500"/> | ||
<Option key="maxFunEvals" value="100"/> | <Option key="maxFunEvals" value="100"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network--> |
<Option key="goal" value="0"/><!--Initial value for the spread --> | <Option key="goal" value="0"/><!--Initial value for the spread --> | ||
<Option key="spread" value="1"/><!--Spread bounds --> | <Option key="spread" value="1"/><!--Spread bounds --> | ||
Line 909: | Line 909: | ||
Build random RBF neural networks | Build random RBF neural networks | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"> |
<Option key="runSize" value="10"/> | <Option key="runSize" value="10"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network--> |
<Option key="goal" value="0"/><!--Initial value for the spread --> | <Option key="goal" value="0"/><!--Initial value for the spread --> | ||
<Option key="spread" value="1"/><!--Spread bounds --> | <Option key="spread" value="1"/><!--Spread bounds --> | ||
Line 923: | Line 923: | ||
A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails. | A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails. | ||
<source lang="xml"> | <source lang="xml"> | ||
− | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder | + | <[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"> |
<Option key="populationType" value="custom"/><!-- the population size must match the number of model interfaces minus 1 --> | <Option key="populationType" value="custom"/><!-- the population size must match the number of model interfaces minus 1 --> | ||
<Option key="populationSize" value="10,10,10"/> | <Option key="populationSize" value="10,10,10"/> | ||
Line 935: | Line 935: | ||
<Option key="migrationInterval" value="3"/><!-- Do we want to prevent any model type going completely extinct --> | <Option key="migrationInterval" value="3"/><!-- Do we want to prevent any model type going completely extinct --> | ||
<Option key="extinctionPrevention" value="no"/> | <Option key="extinctionPrevention" value="no"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#HeterogeneousGeneticInterface|HeterogeneousGeneticInterface]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutate"/> | <Option key="mutationFcn" value="mutate"/> | ||
<Option key="constraintFcn" value="[]"/> | <Option key="constraintFcn" value="[]"/> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#EnsembleGeneticInterface|EnsembleGeneticInterface]]"> |
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
<Option key="mutationFcn" value="simpleMutation"/><!-- the maximum ensemble size --> | <Option key="mutationFcn" value="simpleMutation"/><!-- the maximum ensemble size --> | ||
Line 946: | Line 946: | ||
<Option key="equalityThreshold" value="0.05"/> | <Option key="equalityThreshold" value="0.05"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]"> |
<Option key="creationFcn" value="createInitialPopulation"/> | <Option key="creationFcn" value="createInitialPopulation"/> | ||
<Option key="crossoverFcn" value="simpleCrossover"/> | <Option key="crossoverFcn" value="simpleCrossover"/> | ||
Line 960: | Line 960: | ||
<Option key="stoppingTolerance" value="1e-5"/> | <Option key="stoppingTolerance" value="1e-5"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalGeneticInterface|RationalGeneticInterface]]"> |
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> | ||
<Option key="mutationFcn" value="mutation"/> | <Option key="mutationFcn" value="mutation"/> | ||
Line 971: | Line 971: | ||
<Option key="basis" value="chebyshev"/> | <Option key="basis" value="chebyshev"/> | ||
</[[Config:ModelInterface|ModelInterface]]> | </[[Config:ModelInterface|ModelInterface]]> | ||
− | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface | + | <[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]"> |
<Option key="type" value="RBF"/> | <Option key="type" value="RBF"/> | ||
<Option key="crossoverFcn" value="crossover"/> | <Option key="crossoverFcn" value="crossover"/> |
Revision as of 10:24, 8 February 2008
AdaptiveModelBuilder
rational
Build rational models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="30"/><!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".99"/><!-- Size of the best model history -->
<Option key="historySize" value="15"/><!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalSequentialInterface|RationalSequentialInterface]]"><!-- Bounds for the weights of the rational modeller -->
<Option key="weightBounds" value="1,40"/><!-- Bounds for the percentage of degrees of freedom wrt number of samples -->
<Option key="percentBounds" value="1,100"/><!-- Regardless of the percentage bounds, never use more than this many degrees of freedom -->
<Option key="maxDegrees" value="100"/><!-- When randomizing rational flags, what percentage should be set -->
<Option key="percentRational" value="70"/><!-- If a variable is named "f" of "frequency" it will be modelled differently, if this is set to auto,
- - If this field is set to a variable name, that variable will be considered to be the frequency -->
<Option key="frequencyVariable" value="auto"/><!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="chebyshev"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rationalgenetic
Build rational models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalGeneticInterface|RationalGeneticInterface]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="initial"/><!-- Bounds for the weights of the rational modeller -->
<Option key="weightBounds" value="1,40"/><!-- Bounds for the percentage of degrees of freedom wrt number of samples -->
<Option key="percentBounds" value="1,100"/><!-- Regardless of the percentage bounds, never use more than this many degrees of freedom -->
<Option key="maxDegrees" value="100"/><!-- When randomizing rational flags, what percentage should be set -->
<Option key="percentRational" value="70"/><!-- If a variable is named "f" of "frequency"
it will be modelled differently, if this is set to auto --><!-- If this field is set to a variable name, that variable will be considered to be the frequency -->
<Option key="frequencyVariable" value="auto"/><!-- Base function for interpolation, one of chebyshev, power, legendre -->
<Option key="basis" value="chebyshev"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
RBF
Build Radial Basis Function models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".9"/><!-- Size of the best model history -->
<Option key="historySize" value="15"/><!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFSequentialInterface|BFSequentialInterface]]">
<Option key="type" value="RBF"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/><!--<[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
RBFgenetic
Build Radial Basis Function models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]">
<Option key="type" value="RBF"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="initial"/><!-- Bounds for the shape parameter -->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/><!-- <[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/><!-- Basisfunction, one of 'multiquadric', 'triharmonic', 'biharmonic' --><!-- Specify which implementation to use, currently, 'Direct', 'AP', 'Greedy' and
'FastRBF' are supported.
'Direct' solves the direct problem by inverting the interpolation
matrix
'AP' uses an alternating projections method when the system gets
too large. This is *MUCH* slower than 'Direct', and doesn't
guarantee convergence, use with caution
'Greedy' uses a one point greedy algorithm for selecting the
interpolation centers. Same remark applies as with 'AP'
'FastRBF' interfaces the FastRBF library. When using FastRBF,
make sure your copy of the software is installed under
the src/matlab/contrib directory and that the software
is licensed properly.
The FastRBF matlab toolbox can be found at
http://www.farfieldtechnology.com
-->
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
DACE
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false"><!-- Maximum number of models built before selecting new samples -->
<Option key="maximumRunLength" value="20"/><!-- Degeneration of score if a model gets older -->
<Option key="decay" value=".9"/><!-- Size of the best model history -->
<Option key="historySize" value="15"/><!-- One of best, last. When set to best the best `historySize' models are kept,
- - when set to last, the last `historySize' models are kept -->
<Option key="strategy" value="best"/><!-- <Option key="strategy" value="window"/> -->
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFSequentialInterface|BFSequentialInterface]]">
<Option key="type" value="DACE"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/><!--<[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
DACEgenetic
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="15"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]">
<Option key="type" value="DACE"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="initial"/><!-- Bounds for the shape parameter -->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/><!-- <[[Config:BasisFunction|BasisFunction]] name="biharmonic" min=".1" max="5" scale="log"/> -->
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
DACEps
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFOptimizationInterface|BFOptimizationInterface]]">
<Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/-->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
DACEpso
Build DACE models (= functionally equivalent to Kriging, but a custom implementation)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="true"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFOptimizationInterface|BFOptimizationInterface]]">
<Option key="type" value="DACE"/><!--Option key="multipleBasisFunctionsAllowed" value="false"/-->
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="AP"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingsim
Build kriging models using Simulated Annealing (requires matlab v7.4)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingps
Build kriging models using pattern search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingoptim
Build kriging models using the matlab optimization toolbox
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
kriginggenetic
Build kriging models using a genetic algorithm
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="populationType" value="doubleVector"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingGeneticInterface|KrigingGeneticInterface]]">
<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoversinglepoint"/>
<Option key="mutationFcn" value="@mutationgaussian"/>
<Option key="constraintFcn" value="[]"/>
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingpso
Build kriging models using PSO
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
krigingrandom
Build kriging models randomly
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="runSize" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#KrigingInterface|KrigingInterface]]">
<Option key="lowerThetaBound" value="-5"/>
<Option key="upperThetaBound" value="3"/>
<Option key="regressionFunction" value="regpoly0"/>
<Option key="correlationFunction" value="corrgauss"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splines
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SequentialModelBuilder|SequentialModelBuilder]]" combineOutputs="false">
<Option key="maximumRunLength" value="30"/>
<Option key="decay" value=".99"/>
<Option key="historySize" value="15"/>
<Option key="strategy" value="best"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineSequentialInterface|SplineSequentialInterface]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesgenetic
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineGeneticInterface|SplineGeneticInterface]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinessim
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesps
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
splinesoptim
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SplineInterface|SplineInterface]]">
<Option key="smoothingBounds" value="0,1"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
annbatch
Maintain a population (batch) of feedforward neural networks and mutation to search the parameter space See the matlab neural network toolbox for more information
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#BatchModelBuilder|BatchModelBuilder]]" combineOutputs="false">
<Option key="batchSize" value="10"/><!--One adaptive modeling iteration stops after one of the following two thresholds have been reached-->
<Option key="maxBatches" value="10"/>
<Option key="maxBatchesNoImprovement" value="4"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNBatchInterface|ANNBatchInterface]]"><!--initial hidden layer dimension-->
<Option key="initialSize" value="3,3"/><!--comma separated list of allowed learning rules-->
<Option key="allowedLearningRules" value="trainbr"/><!--performance function to use, empty uses training rule default default-->
<Option key="performFcn" value=""/><!--how many epochs to train for-->
<Option key="epochs" value="300"/><!--max time to train for-->
<Option key="trainingTime" value="Inf"/><!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/><!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,3"/><!--train until the error reaches this goal-->
<Option key="trainingGoal" value="0"/><!--show training progress every x epochs, set to NaN to disable-->
<Option key="trainingProgress" value="NaN"/><!--How to train the network, one of 'auto', 'earlyStopping', 'crossvalidation'
auto: train with early stopping unless regularization is employed
Set to any other value for simply training on all the data, doing nothing special -->
<Option key="trainMethod" value="auto"/><!--the training set - validation set - testset ratios-->
<Option key="earlyStoppingRatios" value="0.80,0.20,0"/><!-- Transfer function to use for all hidden layers and the output layer
So should be a list of max 2 items -->
<Option key="transferFunctionTemplate" value="tansig,purelin"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
anngenetic
Use the matlab gads toolbox to select ANN parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNGeneticInterface|ANNGeneticInterface]]">
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="createInitialPopulation"/><!--initial hidden layer dimension-->
<Option key="initialSize" value="3,3"/><!--comma separated list of allowed learning rules-->
<Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/><!--performance function to use, empty uses training rule default default-->
<Option key="performFcn" value=""/><!--how many epochs to train for-->
<Option key="epochs" value="300"/><!--max time to train for-->
<Option key="trainingTime" value="Inf"/><!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/><!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,3"/><!--train until the error reaches this goal-->
<Option key="trainingGoal" value="0"/><!--show training progress every x epochs, set to NaN to disable-->
<Option key="trainingProgress" value="NaN"/><!--How to train the network, one of 'auto', 'earlyStopping', 'crossvalidation'
auto: train with early stopping unless regularization is employed
Set to any other value for simply training on all the data, doing nothing special -->
<Option key="trainMethod" value="auto"/><!--the training set - validation set - testset ratios-->
<Option key="earlyStoppingRatios" value="0.80,0.20,0"/><!-- Transfer function to use for all hidden layers and the output layer
So should be a list of max 2 items -->
<Option key="transferFunctionTemplate" value="tansig,purelin"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
annrandom
Random ANN model builder, usefull as a baseline comparison
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false"><!--This many iterations before allowing new samples-->
<Option key="runSize" value="10"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#ANNInterface|ANNInterface]]">
<Option key="allowedLearningRules" value="trainbr,trainlm,trainscg"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
fanngenetic
Use the matlab gads toolbox to select ANN parameters using a GA (based on the FANN library)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#FANNGeneticInterface|FANNGeneticInterface]]">
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="createInitialPopulation"/><!--initial hidden layer dimension-->
<Option key="initialSize" value="4,4"/><!--how many epochs to train for-->
<Option key="epochs" value="1500"/><!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/><!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,2"/><!--train until the error reaches this goal-->
<Option key="trainingGoal" value="0"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
nanngenetic
Use the matlab gads toolbox to select ANN parameters using a GA (based on the NNSYSID library)
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#NANNGeneticInterface|NANNGeneticInterface]]">
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="createInitialPopulation"/><!--initial hidden layer dimension-->
<Option key="initialSize" value="10"/><!--how many epochs to train for-->
<Option key="epochs" value="500"/><!--range of initial random weights-->
<Option key="initWeightRange" value="-0.8,0.8"/><!--mutation changes x neurons at a time (in a random layer) with x in [lb ub]-->
<Option key="hiddenUnitDelta" value="-2,3"/><!-- pruning techniques used : 0: none, 1: Mag Threshold, 2: Iterative Mag, 3: OBD, 4: OBS -->
<Option key="allowedPruneTechniques" value="0,1,2,3,4"/><!-- threshold for magnitude based pruning -->
<Option key="threshold" value="0.2"/><!-- retrain epochs while pruning-->
<Option key="retrain" value="50"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmgenetic
Use the matlab gads toolbox to select LSSVM parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the matlab gads toolbox documentation for more information on the options--><!--<Option key="populationType" value="doubleVector"/>-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]"><!--<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoversinglepoint"/>
<Option key="mutationFcn" value="@mutationgaussian"/>-->
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmps
Use the matlab gads toolbox to select LSSVM parameters using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See that matlab gads toolbox documentation for more information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmoptim
Use the matlab optimization toolbox to select LSSVM parameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the optimization toolbox documentation for more information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmpso
Use the PSO toolbox to select LSSVM parameters using Particle Swarm Optimization
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmsim
Use the matlab gads toolbox to select LSSVM parameters using simulated annealing
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmdirect
Use the DIviding RECtangles algorithm to optimize the LS-SVM hyperparameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxits" value="500"/>
<Option key="maxevals" value="100"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
lssvmrandom
Generate random LSSVM models
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<Option key="runSize" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="lssvm"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmgenetic
Use the matlab gads toolbox to select SVM parameters using a GA
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]"><!--<Option key="creationFcn" value="@gacreationuniform"/>
<Option key="crossoverFcn" value="@crossoversinglepoint"/>
<Option key="mutationFcn" value="@mutationgaussian"/>-->
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmps
Use the matlab gads toolbox to select SVM parameters using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmsim
Use the matlab gads toolbox to select SVM parameters using simulated annealing
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the gads toolbox documentation for more information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmoptim
Use the matlab optimization toolbox to select SVM parameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/><!--See the interface matlab file and the optimization toolbox documentation for more
information on the options-->
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmpso
Use the PSO toolbox to select SVM parameters using Particle Swarm Optimization
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PSOModelBuilder|PSOModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#PSOtOptimizer|PSOtOptimizer]]">
<Option key="typePSO" value="0"/>
<Option key="seedPSO" value="1"/>
<Option key="popSize" value="10"/>
<Option key="maxiters" value="10"/>
<Option key="epochInertia" value="8"/>
<Option key="gradientTermination" value="8"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmdirect
Use the DIviding RECtangles algorithm to optimize the SVM hyperparameters
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimizerModelBuilder|OptimizerModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/><!-- Plot the optimization surface, visualizes the search through the parameter space (2D only) -->
<Option key="plotOptimSurface" value="false"/>
<[[Config:Optimizer|Optimizer]] type="[[Optimizer#DirectOptimizer|DirectOptimizer]]">
<Option key="maxits" value="500"/>
<Option key="maxevals" value="100"/>
</[[Config:Optimizer|Optimizer]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
svmrandom
Generate random SVMs
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<Option key="runSize" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMInterface|SVMInterface]]">
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-6"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnbatch
Batch model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#BatchModelBuilder|BatchModelBuilder]]" combineOutputs="false">
<Option key="maxBatches" value="10"/>
<Option key="maxBatchesNoImprovement" value="3"/>
<Option key="batchSize" value="10"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNBatchInterface|RBFNNBatchInterface]]"><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,2"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnngenetic
Genetic model builder for Radial Basis Function Neural networks See the matlab neural network toolbox for more information
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="populationType" value="custom"/>
<Option key="populationSize" value="10"/>
<Option key="maxGenerations" value="10"/>
<Option key="eliteCount" value="1"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNGeneticInterface|RBFNNGeneticInterface]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,2"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnoptim
Build Radial Basis Function Neural networks using the Matlab Optimization Toolbox
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#OptimToolboxModelBuilder|OptimToolboxModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="300"/>
<Option key="maxFunEvals" value="300"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,3"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnps
Build Radial Basis Function Neural networks using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#PatternSearchModelBuilder|PatternSearchModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<Option key="searchMethod" value="GPSPositiveBasis2N"/>
<Option key="pollMethod" value="MADSPositiveBasis2N"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,3"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnsim
Build Radial Basis Function Neural networks using Pattern Search
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#SimAnnealingModelBuilder|SimAnnealingModelBuilder]]" combineOutputs="false"><!-- Re-start strategy for resuming the optimization process between sampling iterations.
One of 'random','continue','model' and 'intelligent' (Default). See the docs for more information -->
<Option key="restartStrategy" value="intelligent"/>
<Option key="maxIterations" value="500"/>
<Option key="maxFunEvals" value="100"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,3"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
rbfnnrandom
Build random RBF neural networks
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#RandomModelBuilder|RandomModelBuilder]]" combineOutputs="false">
<Option key="runSize" value="10"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RBFNNInterface|RBFNNInterface]]"><!--Error goal when constructing the network-->
<Option key="goal" value="0"/><!--Initial value for the spread -->
<Option key="spread" value="1"/><!--Spread bounds -->
<Option key="spreadBounds" value="0.0001,3"/><!--Maximum number of neurons to use per network-->
<Option key="maxNeurons" value="100"/>
<Option key="trainingProgress" value="Inf"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>
heterogenetic
A heterogeneous genetic model builder. Uses a genetic algorithm with speciation (island model) to evolve different model types together. The models types compete against each other until the best model prevails.
<[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]] type="[[AdaptiveModelBuilder#GeneticModelBuilder|GeneticModelBuilder]]" combineOutputs="false">
<Option key="populationType" value="custom"/><!-- the population size must match the number of model interfaces minus 1 -->
<Option key="populationSize" value="10,10,10"/>
<Option key="maxGenerations" value="10"/>
<Option key="crossoverFraction" value="0.7"/>
<Option key="eliteCount" value="1"/>
<Option key="stallGenLimit" value="4"/>
<Option key="stallTimeLimit" value="Inf"/>
<Option key="migrationDirection" value="forward"/>
<Option key="migrationFraction" value="0.1"/>
<Option key="migrationInterval" value="3"/><!-- Do we want to prevent any model type going completely extinct -->
<Option key="extinctionPrevention" value="no"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#HeterogeneousGeneticInterface|HeterogeneousGeneticInterface]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutate"/>
<Option key="constraintFcn" value="[]"/>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#EnsembleGeneticInterface|EnsembleGeneticInterface]]">
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/><!-- the maximum ensemble size -->
<Option key="maxSize" value="4"/><!-- Ensemble members should differ this much percent -->
<Option key="equalityThreshold" value="0.05"/>
</[[Config:ModelInterface|ModelInterface]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#SVMGeneticInterface|SVMGeneticInterface]]">
<Option key="creationFcn" value="createInitialPopulation"/>
<Option key="crossoverFcn" value="simpleCrossover"/>
<Option key="mutationFcn" value="simpleMutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="backend" value="libSVM"/>
<Option key="type" value="epsilon-SVR"/>
<Option key="kernel" value="rbf"/>
<Option key="kernelParamBounds" value="-4,4"/>
<Option key="regParamBounds" value="-5,5"/>
<Option key="nu" value="0.01"/>
<Option key="epsilon" value="0"/>
<Option key="stoppingTolerance" value="1e-5"/>
</[[Config:ModelInterface|ModelInterface]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#RationalGeneticInterface|RationalGeneticInterface]]">
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="initial"/>
<Option key="weightBounds" value="1,40"/>
<Option key="percentBounds" value="1,100"/>
<Option key="percentRational" value="70"/>
<Option key="frequencyVariable" value="off"/>
<Option key="basis" value="chebyshev"/>
</[[Config:ModelInterface|ModelInterface]]>
<[[Config:ModelInterface|ModelInterface]] type="[[ModelInterface#BFGeneticInterface|BFGeneticInterface]]">
<Option key="type" value="RBF"/>
<Option key="crossoverFcn" value="crossover"/>
<Option key="mutationFcn" value="mutation"/>
<Option key="constraintFcn" value="[]"/>
<Option key="creationFcn" value="initial"/>
<[[Config:BasisFunction|BasisFunction]] name="gaussian" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="multiquadric" min=".1" max="5" scale="log"/>
<[[Config:BasisFunction|BasisFunction]] name="exponential" min=".1,.5" max="5,2" scale="log,lin"/>
<Option key="regression" value="-1,0,1,2"/>
<Option key="backend" value="Direct"/>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:ModelInterface|ModelInterface]]>
</[[Config:AdaptiveModelBuilder|AdaptiveModelBuilder]]>